001     153632
005     20240229123046.0
024 7 _ |a 10.1007/s00103-020-03097-9
|2 doi
024 7 _ |a pmid:32034443
|2 pmid
024 7 _ |a 1436-9990
|2 ISSN
024 7 _ |a 1437-1588
|2 ISSN
024 7 _ |a altmetric:75577226
|2 altmetric
037 _ _ |a DKFZ-2020-00355
041 _ _ |a ger
082 _ _ |a 610
100 1 _ |a Wiessner, Christian
|b 0
245 _ _ |a [Persons with migration background in the German National Cohort (NAKO)-sociodemographic characteristics and comparisons with the German autochthonous population].
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583757300_24398
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Mar;63(3):279-289.
520 _ _ |a Persons with a migration background (PmM) as a population group usually differ from the autochthonous population in terms of morbidity, mortality, and use of the health care system, but they participate less frequently in health studies. The PmM group is very heterogeneous, which has hardly been taken into account in studies so far.Sociodemographic characteristics of PmM in the NAKO health study (age, sex, time since migration, education) are presented. In addition, it is examined through an example whether migration background is related to the use of cancer screening for colorectal cancer (hemoccult test).Data of the first 101,816 persons of the NAKO were analyzed descriptively and cartographically. The migration background was assigned on the basis of the definition of the Federal Statistical Office, based on nationality, country of birth, year of entry, and country of birth of the parents.Overall, the PmM proportion is 16.0%. The distribution across the 18 study centers varies considerably between 6% (Neubrandenburg) and 33% (Düsseldorf). With 153 countries of origin, most countries are represented in the NAKO. All variables show clear differences between the different regions of origin. In the hemoccult test, persons of Turkish origin (OR = 0.67) and resettlers (OR = 0.60) have a lower participation rate. PmM born in Germany do not differ in this respect from the autochthonous population (OR = 0.99).PmM in the NAKO are a very heterogeneous group. However, due to the sample size, individual subgroups of migrants can be studied separately with respect to region of origin.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Keil, Thomas
|b 1
700 1 _ |a Krist, Lilian
|b 2
700 1 _ |a Zeeb, Hajo
|b 3
700 1 _ |a Dragano, Nico
|b 4
700 1 _ |a Schmidt, Börge
|b 5
700 1 _ |a Ahrens, Wolfgang
|b 6
700 1 _ |a Berger, Klaus
|b 7
700 1 _ |a Castell, Stefanie
|b 8
700 1 _ |a Fricke, Julia
|b 9
700 1 _ |a Führer, Amand
|b 10
700 1 _ |a Gastell, Sylvia
|b 11
700 1 _ |a Greiser, Halina
|0 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
|b 12
|u dkfz
700 1 _ |a Guo, Feng
|0 P:(DE-He78)0311ebf3415e41860b4e2c56fbae6919
|b 13
|u dkfz
700 1 _ |a Jaeschke, Lina
|b 14
700 1 _ |a Jochem, Carmen
|b 15
700 1 _ |a Jöckel, Karl-Heinz
|b 16
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 17
|u dkfz
700 1 _ |a Koch-Gallenkamp, Lena
|0 P:(DE-He78)13aa5fe9d9961c9fd67193befb0dcf88
|b 18
|u dkfz
700 1 _ |a Krause, Gérard
|b 19
700 1 _ |a Kuss, Oliver
|b 20
700 1 _ |a Legath, Nicole
|b 21
700 1 _ |a Leitzmann, Michael
|b 22
700 1 _ |a Lieb, Wolfgang
|b 23
700 1 _ |a Meinke-Franze, Claudia
|b 24
700 1 _ |a Meisinger, Christa
|b 25
700 1 _ |a Mikolajczyk, Rafael
|b 26
700 1 _ |a Obi, Nadia
|b 27
700 1 _ |a Pischon, Tobias
|b 28
700 1 _ |a Schipf, Sabine
|b 29
700 1 _ |a Schmoor, Claudia
|b 30
700 1 _ |a Schramm, Sara
|b 31
700 1 _ |a Schulze, Matthias B
|b 32
700 1 _ |a Sowarka, Nicole
|b 33
700 1 _ |a Waniek, Sabina
|b 34
700 1 _ |a Wigmann, Claudia
|b 35
700 1 _ |a Willich, Stefan N
|b 36
700 1 _ |a Becher, Heiko
|b 37
773 _ _ |a 10.1007/s00103-020-03097-9
|0 PERI:(DE-600)1470303-8
|n 3
|p 279-289
|t Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
|v 63
|y 2020
|x 1437-1588
909 C O |p VDB
|o oai:inrepo02.dkfz.de:153632
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)0311ebf3415e41860b4e2c56fbae6919
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)13aa5fe9d9961c9fd67193befb0dcf88
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BUNDESGESUNDHEITSBLA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21