000153707 001__ 153707
000153707 005__ 20240229123047.0
000153707 0247_ $$2doi$$a10.1007/s00103-020-03093-z
000153707 0247_ $$2pmid$$apmid:32047976
000153707 0247_ $$2ISSN$$a1436-9990
000153707 0247_ $$2ISSN$$a1437-1588
000153707 0247_ $$2altmetric$$aaltmetric:76019833
000153707 037__ $$aDKFZ-2020-00405
000153707 041__ $$ager
000153707 082__ $$a610
000153707 1001_ $$aSchipf, Sabine$$b0
000153707 245__ $$a[The baseline assessment of the German National Cohort (NAKO Gesundheitsstudie): participation in the examination modules, quality assurance, and the use of secondary data].
000153707 260__ $$aHeidelberg$$bSpringer$$c2020
000153707 3367_ $$2DRIVER$$aarticle
000153707 3367_ $$2DataCite$$aOutput Types/Journal article
000153707 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636704991_5415
000153707 3367_ $$2BibTeX$$aARTICLE
000153707 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153707 3367_ $$00$$2EndNote$$aJournal Article
000153707 500__ $$a2020 Mar;63(3):254-266
000153707 520__ $$aThe German National Cohort (NAKO) is an interdisciplinary health study aimed at elucidating causes for common chronic diseases and detecting their preclinical stages. This article provides an overview of design, methods, participation in the examinations, and their quality assurance based on the midterm baseline dataset (MBD) of the recruitment.More than 200,000 women and men aged 20-69 years derived from random samples of the German general population were recruited in 18 study centers (2014-2019). The data collection comprised physical examinations, standardized interviews and questionnaires, and the collection of biomedical samples for all participants (level 1). At least 20% of all participants received additional in-depth examinations (level 2), and 30,000 received whole-body magnet resonance imaging (MRI). Additional information will be collected through secondary data sources such as medical registries, health insurances, and pension funds. This overview is based on the MBD, which included 101,839 participants, of whom 11,371 received an MRI.The mean response proportion was 18%. The participation in the examinations was high with most of the modules performed by over 95%. Among MRI participants, 96% completed all 12 MRI sequences. More than 90% of the participants agreed to the use of complementary secondary and registry data.Individuals selected for the NAKO were willing to participate in all examinations despite the time-consuming program. The NAKO provides a central resource for population-based epidemiologic research and will contribute to developing innovative strategies for prevention, screening and prediction of chronic diseases.
000153707 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000153707 588__ $$aDataset connected to CrossRef, PubMed,
000153707 7001_ $$aSchöne, Gina$$b1
000153707 7001_ $$aSchmidt, Börge$$b2
000153707 7001_ $$aGünther, Kathrin$$b3
000153707 7001_ $$aStübs, Gunthard$$b4
000153707 7001_ $$0P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aGreiser, Karin H$$b5$$udkfz
000153707 7001_ $$aBamberg, Fabian$$b6
000153707 7001_ $$aMeinke-Franze, Claudia$$b7
000153707 7001_ $$aBecher, Heiko$$b8
000153707 7001_ $$aBerger, Klaus$$b9
000153707 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b10$$udkfz
000153707 7001_ $$aCastell, Stefanie$$b11
000153707 7001_ $$0P:(DE-HGF)0$$aDamms-Machado, Antje$$b12
000153707 7001_ $$aFischer, Beate$$b13
000153707 7001_ $$aFranzke, Claus-Werner$$b14
000153707 7001_ $$aFricke, Julia$$b15
000153707 7001_ $$aGastell, Sylvia$$b16
000153707 7001_ $$aGünther, Matthias$$b17
000153707 7001_ $$aHoffmann, Wolfgang$$b18
000153707 7001_ $$aHolleczek, Bernd$$b19
000153707 7001_ $$aJaeschke, Lina$$b20
000153707 7001_ $$aJagodzinski, Annika$$b21
000153707 7001_ $$aJöckel, Karl-Heinz$$b22
000153707 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b23$$udkfz
000153707 7001_ $$aKauczor, Hans-Ulrich$$b24
000153707 7001_ $$aKemmling, Yvonne$$b25
000153707 7001_ $$aKluttig, Alexander$$b26
000153707 7001_ $$aKrist, Lilian$$b27
000153707 7001_ $$aKurth, Bärbel$$b28
000153707 7001_ $$aKuß, Oliver$$b29
000153707 7001_ $$aLegath, Nicole$$b30
000153707 7001_ $$aLeitzmann, Michael$$b31
000153707 7001_ $$aLieb, Wolfgang$$b32
000153707 7001_ $$aLinseisen, Jakob$$b33
000153707 7001_ $$aLöffler, Markus$$b34
000153707 7001_ $$aMichels, Karin B$$b35
000153707 7001_ $$aMikolajczyk, Rafael$$b36
000153707 7001_ $$aPigeot, Iris$$b37
000153707 7001_ $$aMueller, Ulrich$$b38
000153707 7001_ $$aPeters, Annette$$b39
000153707 7001_ $$aRach, Stefan$$b40
000153707 7001_ $$aSchikowski, Tamara$$b41
000153707 7001_ $$aSchulze, Matthias B$$b42
000153707 7001_ $$aStallmann, Christoph$$b43
000153707 7001_ $$aStang, Andreas$$b44
000153707 7001_ $$aSwart, Enno$$b45
000153707 7001_ $$aWaniek, Sabine$$b46
000153707 7001_ $$aWirkner, Kerstin$$b47
000153707 7001_ $$aVölzke, Henry$$b48
000153707 7001_ $$aPischon, Tobias$$b49
000153707 7001_ $$aAhrens, Wolfgang$$b50
000153707 773__ $$0PERI:(DE-600)1470303-8$$a10.1007/s00103-020-03093-z$$n3$$p254-266$$tBundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz$$v63$$x1437-1588$$y2020
000153707 909CO $$ooai:inrepo02.dkfz.de:153707$$pVDB
000153707 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000153707 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000153707 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000153707 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b23$$kDKFZ
000153707 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000153707 9141_ $$y2020
000153707 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000153707 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153707 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153707 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBUNDESGESUNDHEITSBLA : 2017
000153707 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000153707 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000153707 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153707 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000153707 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000153707 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x1
000153707 980__ $$ajournal
000153707 980__ $$aVDB
000153707 980__ $$aI:(DE-He78)C020-20160331
000153707 980__ $$aI:(DE-He78)C070-20160331
000153707 980__ $$aUNRESTRICTED