000153707 001__ 153707 000153707 005__ 20240229123047.0 000153707 0247_ $$2doi$$a10.1007/s00103-020-03093-z 000153707 0247_ $$2pmid$$apmid:32047976 000153707 0247_ $$2ISSN$$a1436-9990 000153707 0247_ $$2ISSN$$a1437-1588 000153707 0247_ $$2altmetric$$aaltmetric:76019833 000153707 037__ $$aDKFZ-2020-00405 000153707 041__ $$ager 000153707 082__ $$a610 000153707 1001_ $$aSchipf, Sabine$$b0 000153707 245__ $$a[The baseline assessment of the German National Cohort (NAKO Gesundheitsstudie): participation in the examination modules, quality assurance, and the use of secondary data]. 000153707 260__ $$aHeidelberg$$bSpringer$$c2020 000153707 3367_ $$2DRIVER$$aarticle 000153707 3367_ $$2DataCite$$aOutput Types/Journal article 000153707 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636704991_5415 000153707 3367_ $$2BibTeX$$aARTICLE 000153707 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000153707 3367_ $$00$$2EndNote$$aJournal Article 000153707 500__ $$a2020 Mar;63(3):254-266 000153707 520__ $$aThe German National Cohort (NAKO) is an interdisciplinary health study aimed at elucidating causes for common chronic diseases and detecting their preclinical stages. This article provides an overview of design, methods, participation in the examinations, and their quality assurance based on the midterm baseline dataset (MBD) of the recruitment.More than 200,000 women and men aged 20-69 years derived from random samples of the German general population were recruited in 18 study centers (2014-2019). The data collection comprised physical examinations, standardized interviews and questionnaires, and the collection of biomedical samples for all participants (level 1). At least 20% of all participants received additional in-depth examinations (level 2), and 30,000 received whole-body magnet resonance imaging (MRI). Additional information will be collected through secondary data sources such as medical registries, health insurances, and pension funds. This overview is based on the MBD, which included 101,839 participants, of whom 11,371 received an MRI.The mean response proportion was 18%. The participation in the examinations was high with most of the modules performed by over 95%. Among MRI participants, 96% completed all 12 MRI sequences. More than 90% of the participants agreed to the use of complementary secondary and registry data.Individuals selected for the NAKO were willing to participate in all examinations despite the time-consuming program. The NAKO provides a central resource for population-based epidemiologic research and will contribute to developing innovative strategies for prevention, screening and prediction of chronic diseases. 000153707 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0 000153707 588__ $$aDataset connected to CrossRef, PubMed, 000153707 7001_ $$aSchöne, Gina$$b1 000153707 7001_ $$aSchmidt, Börge$$b2 000153707 7001_ $$aGünther, Kathrin$$b3 000153707 7001_ $$aStübs, Gunthard$$b4 000153707 7001_ $$0P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aGreiser, Karin H$$b5$$udkfz 000153707 7001_ $$aBamberg, Fabian$$b6 000153707 7001_ $$aMeinke-Franze, Claudia$$b7 000153707 7001_ $$aBecher, Heiko$$b8 000153707 7001_ $$aBerger, Klaus$$b9 000153707 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b10$$udkfz 000153707 7001_ $$aCastell, Stefanie$$b11 000153707 7001_ $$0P:(DE-HGF)0$$aDamms-Machado, Antje$$b12 000153707 7001_ $$aFischer, Beate$$b13 000153707 7001_ $$aFranzke, Claus-Werner$$b14 000153707 7001_ $$aFricke, Julia$$b15 000153707 7001_ $$aGastell, Sylvia$$b16 000153707 7001_ $$aGünther, Matthias$$b17 000153707 7001_ $$aHoffmann, Wolfgang$$b18 000153707 7001_ $$aHolleczek, Bernd$$b19 000153707 7001_ $$aJaeschke, Lina$$b20 000153707 7001_ $$aJagodzinski, Annika$$b21 000153707 7001_ $$aJöckel, Karl-Heinz$$b22 000153707 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b23$$udkfz 000153707 7001_ $$aKauczor, Hans-Ulrich$$b24 000153707 7001_ $$aKemmling, Yvonne$$b25 000153707 7001_ $$aKluttig, Alexander$$b26 000153707 7001_ $$aKrist, Lilian$$b27 000153707 7001_ $$aKurth, Bärbel$$b28 000153707 7001_ $$aKuß, Oliver$$b29 000153707 7001_ $$aLegath, Nicole$$b30 000153707 7001_ $$aLeitzmann, Michael$$b31 000153707 7001_ $$aLieb, Wolfgang$$b32 000153707 7001_ $$aLinseisen, Jakob$$b33 000153707 7001_ $$aLöffler, Markus$$b34 000153707 7001_ $$aMichels, Karin B$$b35 000153707 7001_ $$aMikolajczyk, Rafael$$b36 000153707 7001_ $$aPigeot, Iris$$b37 000153707 7001_ $$aMueller, Ulrich$$b38 000153707 7001_ $$aPeters, Annette$$b39 000153707 7001_ $$aRach, Stefan$$b40 000153707 7001_ $$aSchikowski, Tamara$$b41 000153707 7001_ $$aSchulze, Matthias B$$b42 000153707 7001_ $$aStallmann, Christoph$$b43 000153707 7001_ $$aStang, Andreas$$b44 000153707 7001_ $$aSwart, Enno$$b45 000153707 7001_ $$aWaniek, Sabine$$b46 000153707 7001_ $$aWirkner, Kerstin$$b47 000153707 7001_ $$aVölzke, Henry$$b48 000153707 7001_ $$aPischon, Tobias$$b49 000153707 7001_ $$aAhrens, Wolfgang$$b50 000153707 773__ $$0PERI:(DE-600)1470303-8$$a10.1007/s00103-020-03093-z$$n3$$p254-266$$tBundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz$$v63$$x1437-1588$$y2020 000153707 909CO $$ooai:inrepo02.dkfz.de:153707$$pVDB 000153707 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ 000153707 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ 000153707 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ 000153707 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b23$$kDKFZ 000153707 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0 000153707 9141_ $$y2020 000153707 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000153707 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000153707 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000153707 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBUNDESGESUNDHEITSBLA : 2017 000153707 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000153707 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000153707 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000153707 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000153707 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0 000153707 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x1 000153707 980__ $$ajournal 000153707 980__ $$aVDB 000153707 980__ $$aI:(DE-He78)C020-20160331 000153707 980__ $$aI:(DE-He78)C070-20160331 000153707 980__ $$aUNRESTRICTED