001     153731
005     20240229112711.0
024 7 _ |a 10.1186/s13058-019-1221-1
|2 doi
024 7 _ |a pmid:31847907
|2 pmid
024 7 _ |a pmc:PMC6918633
|2 pmc
024 7 _ |a 1465-5411
|2 ISSN
024 7 _ |a 1465-542X
|2 ISSN
024 7 _ |a altmetric:72996544
|2 altmetric
037 _ _ |a DKFZ-2020-00428
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Giardiello, Daniele
|b 0
245 _ _ |a Prediction and clinical utility of a contralateral breast cancer risk model.
260 _ _ |a London
|c 2019
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638455569_9816
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Breast cancer survivors are at risk for contralateral breast cancer (CBC), with the consequent burden of further treatment and potentially less favorable prognosis. We aimed to develop and validate a CBC risk prediction model and evaluate its applicability for clinical decision-making.We included data of 132,756 invasive non-metastatic breast cancer patients from 20 studies with 4682 CBC events and a median follow-up of 8.8 years. We developed a multivariable Fine and Gray prediction model (PredictCBC-1A) including patient, primary tumor, and treatment characteristics and BRCA1/2 germline mutation status, accounting for the competing risks of death and distant metastasis. We also developed a model without BRCA1/2 mutation status (PredictCBC-1B) since this information was available for only 6% of patients and is routinely unavailable in the general breast cancer population. Prediction performance was evaluated using calibration and discrimination, calculated by a time-dependent area under the curve (AUC) at 5 and 10 years after diagnosis of primary breast cancer, and an internal-external cross-validation procedure. Decision curve analysis was performed to evaluate the net benefit of the model to quantify clinical utility.In the multivariable model, BRCA1/2 germline mutation status, family history, and systemic adjuvant treatment showed the strongest associations with CBC risk. The AUC of PredictCBC-1A was 0.63 (95% prediction interval (PI) at 5 years, 0.52-0.74; at 10 years, 0.53-0.72). Calibration-in-the-large was -0.13 (95% PI: -1.62-1.37), and the calibration slope was 0.90 (95% PI: 0.73-1.08). The AUC of Predict-1B at 10 years was 0.59 (95% PI: 0.52-0.66); calibration was slightly lower. Decision curve analysis for preventive contralateral mastectomy showed potential clinical utility of PredictCBC-1A between thresholds of 4-10% 10-year CBC risk for BRCA1/2 mutation carriers and non-carriers.We developed a reasonably calibrated model to predict the risk of CBC in women of European-descent; however, prediction accuracy was moderate. Our model shows potential for improved risk counseling, but decision-making regarding contralateral preventive mastectomy, especially in the general breast cancer population where limited information of the mutation status in BRCA1/2 is available, remains challenging.
536 _ _ |a 319H - Addenda (POF3-319H)
|0 G:(DE-HGF)POF3-319H
|c POF3-319H
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Steyerberg, Ewout W
|b 1
700 1 _ |a Hauptmann, Michael
|b 2
700 1 _ |a Adank, Muriel A
|b 3
700 1 _ |a Akdeniz, Delal
|b 4
700 1 _ |a Blomqvist, Carl
|b 5
700 1 _ |a Bojesen, Stig E
|b 6
700 1 _ |a Bolla, Manjeet K
|b 7
700 1 _ |a Brinkhuis, Mariël
|b 8
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 9
|u dkfz
700 1 _ |a Czene, Kamila
|b 10
700 1 _ |a Devilee, Peter
|b 11
700 1 _ |a Dunning, Alison M
|b 12
700 1 _ |a Easton, Douglas F
|b 13
700 1 _ |a Eccles, Diana M
|b 14
700 1 _ |a Fasching, Peter A
|b 15
700 1 _ |a Figueroa, Jonine
|b 16
700 1 _ |a Flyger, Henrik
|b 17
700 1 _ |a García-Closas, Montserrat
|b 18
700 1 _ |a Haeberle, Lothar
|b 19
700 1 _ |a Haiman, Christopher A
|b 20
700 1 _ |a Hall, Per
|b 21
700 1 _ |a Hamann, Ute
|0 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
|b 22
|u dkfz
700 1 _ |a Hopper, John L
|b 23
700 1 _ |a Jager, Agnes
|b 24
700 1 _ |a Jakubowska, Anna
|b 25
700 1 _ |a Jung, Audrey
|0 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
|b 26
|u dkfz
700 1 _ |a Keeman, Renske
|b 27
700 1 _ |a Kramer, Iris
|b 28
700 1 _ |a Lambrechts, Diether
|b 29
700 1 _ |a Le Marchand, Loic
|b 30
700 1 _ |a Lindblom, Annika
|b 31
700 1 _ |a Lubiński, Jan
|b 32
700 1 _ |a Manoochehri, Mehdi
|0 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc
|b 33
|u dkfz
700 1 _ |a Mariani, Luigi
|b 34
700 1 _ |a Nevanlinna, Heli
|b 35
700 1 _ |a Oldenburg, Hester S A
|b 36
700 1 _ |a Pelders, Saskia
|b 37
700 1 _ |a Pharoah, Paul D P
|b 38
700 1 _ |a Shah, Mitul
|b 39
700 1 _ |a Siesling, Sabine
|b 40
700 1 _ |a Smit, Vincent T H B M
|b 41
700 1 _ |a Southey, Melissa C
|b 42
700 1 _ |a Tapper, William J
|b 43
700 1 _ |a Tollenaar, Rob A E M
|b 44
700 1 _ |a van den Broek, Alexandra J
|b 45
700 1 _ |a van Deurzen, Carolien H M
|b 46
700 1 _ |a van Leeuwen, Flora E
|b 47
700 1 _ |a van Ongeval, Chantal
|b 48
700 1 _ |a Van't Veer, Laura J
|b 49
700 1 _ |a Wang, Qin
|b 50
700 1 _ |a Wendt, Camilla
|b 51
700 1 _ |a Westenend, Pieter J
|b 52
700 1 _ |a Hooning, Maartje J
|b 53
700 1 _ |a Schmidt, Marjanka K
|b 54
773 _ _ |a 10.1186/s13058-019-1221-1
|g Vol. 21, no. 1, p. 144
|0 PERI:(DE-600)2041618-0
|n 1
|p 144
|t Breast cancer research
|v 21
|y 2019
|x 1465-542X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:153731
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 33
|6 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-319H
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Addenda
|x 0
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BREAST CANCER RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BREAST CANCER RES : 2017
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)B072-20160331
|k B072
|l B072 Molekulargenetik des Mammakarzinoms
|x 1
920 1 _ |0 I:(DE-He78)B070-20160331
|k B070
|l B070 Funktionelle Genomanalyse
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)B072-20160331
980 _ _ |a I:(DE-He78)B070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21