000153795 001__ 153795
000153795 005__ 20240229133153.0
000153795 0247_ $$2doi$$a10.1136/bmjdrc-2019-000933
000153795 0247_ $$2pmid$$apmid:32079612
000153795 0247_ $$2altmetric$$aaltmetric:77175827
000153795 037__ $$aDKFZ-2020-00461
000153795 041__ $$aeng
000153795 082__ $$a610
000153795 1001_ $$0P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aAnusruti, Ankita$$b0$$eFirst author$$udkfz
000153795 245__ $$aFactors associated with high oxidative stress in patients with type 2 diabetes: a meta-analysis of two cohort studies.
000153795 260__ $$aLondon$$bBMJ Publishing Group$$c2020
000153795 3367_ $$2DRIVER$$aarticle
000153795 3367_ $$2DataCite$$aOutput Types/Journal article
000153795 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636705477_5414
000153795 3367_ $$2BibTeX$$aARTICLE
000153795 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153795 3367_ $$00$$2EndNote$$aJournal Article
000153795 500__ $$a#EA:C070#LA:C070#
000153795 520__ $$aOur objective is to identify the potential factors associated with serum Diacron's reactive oxygen metabolites test (D-ROM) levels of patients with type 2 diabetes mellitus (T2DM) by conducting cross-sectional and longitudinal analyses in two large cohorts and further strengthening these results by performing a meta-analysis.Serum D-ROM concentrations were measured in 1045 and 1101 patients with T2DM from two independent cohort studies from Germany at baseline and repeatedly 3-4 years later. The cross-sectional and longitudinal associations of various potential determinants with D-ROM levels were assessed with a backwards selection algorithm in multivariable adjusted models.In the meta-analysis of the cross-sectional analysis, female sex, low education, obesity, smoking, high total cholesterol, hemoglobin A1c ≥7%, no diabetes medication, a history of myocardial infarction, heart failure, a history of cancer and C reactive protein levels (CRP) >3 mg/L were statistically significantly associated with increased D-ROM levels in patients with T2DM. The meta-analysis of the longitudinal analysis revealed that old age, female sex, obesity, smoking, physical inactivity, high alcohol consumption, ≥5 years since diabetes diagnosis and CRP levels between 3 mg/L and 10 mg/L were statistically significantly associated with D-ROM levels measured 3-4 years later.This comprehensive analysis confirmed that several modifiable risk factors are being associated with oxidative stress in patients with T2DM within an observational study design. We discuss potential prevention measures against these risk factors that might help to reduce oxidative stress and to prevent some cases of premature mortality in patients with T2DM.
000153795 536__ $$0G:(DE-HGF)POF3-323$$a323 - Metabolic Dysfunction as Risk Factor (POF3-323)$$cPOF3-323$$fPOF III$$x0
000153795 588__ $$aDataset connected to CrossRef, PubMed,
000153795 7001_ $$0P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aXuan, Yang$$b1$$udkfz
000153795 7001_ $$0P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aGào, Xīn$$b2$$udkfz
000153795 7001_ $$aJansen, Eugène H J M$$b3
000153795 7001_ $$0P:(DE-He78)358cd16fe1dd16be6e4eaf0e76e5ad57$$aLaetsch, Dana Clarissa$$b4$$udkfz
000153795 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b5$$udkfz
000153795 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b6$$eLast author$$udkfz
000153795 773__ $$0PERI:(DE-600)2732918-5$$a10.1136/bmjdrc-2019-000933$$gVol. 8, no. 1, p. e000933 -$$n1$$pe000933$$tBMJ Open Diabetes Research & Care$$v8$$x2052-4897$$y2020
000153795 909CO $$ooai:inrepo02.dkfz.de:153795$$pVDB
000153795 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000153795 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000153795 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000153795 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)358cd16fe1dd16be6e4eaf0e76e5ad57$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000153795 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000153795 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000153795 9131_ $$0G:(DE-HGF)POF3-323$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vMetabolic Dysfunction as Risk Factor$$x0
000153795 9141_ $$y2020
000153795 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000153795 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000153795 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000153795 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000153795 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000153795 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000153795 915__ $$0LIC:(DE-HGF)CCBYNCNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial CC BY-NC (No Version)$$bDOAJ
000153795 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000153795 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000153795 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000153795 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000153795 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000153795 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000153795 980__ $$ajournal
000153795 980__ $$aVDB
000153795 980__ $$aI:(DE-He78)C070-20160331
000153795 980__ $$aUNRESTRICTED