001     153900
005     20240229123052.0
024 7 _ |a 10.1016/j.jtbi.2020.110230
|2 doi
024 7 _ |a pmid:32142806
|2 pmid
024 7 _ |a 0022-5193
|2 ISSN
024 7 _ |a 1095-8541
|2 ISSN
037 _ _ |a DKFZ-2020-00510
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Hahn, Artur
|b 0
245 _ _ |a Gibbs point field model quantifies disorder in microvasculature of U87-glioblastoma.
260 _ _ |a Amsterdam
|c 2020
|b Elsevier Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601034875_17569
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Jun 7;494:110230#LA:E010#
520 _ _ |a Microvascular proliferation in glioblastoma multiforme is a biological key mechanism to facilitate tumor growth and infiltration and a main target for treatment interventions. The vascular architecture can be obtained by Single Plane Illumination Microscopy (SPIM) to evaluate vascular heterogeneity in tumorous tissue. We make use of the Gibbs point field model to quantify the order of regularity in capillary distributions found in the U87 glioblastoma model in a murine model and to compare tumorous and healthy brain tissue. A single model parameter Γ was assigned that is linked to tissue-specific vascular topology through Monte-Carlo simulations. Distributions of the model parameter Γ differ significantly between glioblastoma tissue with mean 〈ΓG〉=2.1±0.4, as compared to healthy brain tissue with mean 〈ΓH〉=4.9±0.4, suggesting that the average Γ-value allows for tissue differentiation. These results may be used for diagnostic magnetic resonance imaging, where it has been shown recently that Γ is linked to tissue-inherent relaxation parameters.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Bode, Julia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Krwel, Thomas
|b 2
700 1 _ |a Kampf, Thomas
|b 3
700 1 _ |a Buschle, Lukas R
|0 P:(DE-He78)43022bfc8cf10944a3785cef18005631
|b 4
|u dkfz
700 1 _ |a Sturm, Volker
|0 P:(DE-He78)4e1dc3da9413738f8e656608ff76b93d
|b 5
700 1 _ |a Zhang, Kevin Sun
|0 P:(DE-He78)b542df279437ced507cda1a8c93a2d4d
|b 6
|u dkfz
700 1 _ |a Tews, Bjrn
|b 7
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 8
|u dkfz
700 1 _ |a Heiland, Sabine
|b 9
700 1 _ |a Bendszus, Martin
|b 10
700 1 _ |a Ziener, Christian H
|0 P:(DE-He78)a56941777fbaf0ca1008366e7e16667f
|b 11
|u dkfz
700 1 _ |a Breckwoldt, Michael O
|0 P:(DE-He78)5ba5b48bd126214d9cb66291fa4ae303
|b 12
|u dkfz
700 1 _ |a Kurz, Felix Tobias
|0 P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9
|b 13
|e Last author
773 _ _ |a 10.1016/j.jtbi.2020.110230
|g p. 110230 -
|0 PERI:(DE-600)1470953-3
|p 110230
|t Journal of theoretical biology
|v 494
|y 2020
|x 0022-5193
909 C O |p VDB
|o oai:inrepo02.dkfz.de:153900
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)43022bfc8cf10944a3785cef18005631
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)4e1dc3da9413738f8e656608ff76b93d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)b542df279437ced507cda1a8c93a2d4d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)a56941777fbaf0ca1008366e7e16667f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)5ba5b48bd126214d9cb66291fa4ae303
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J THEOR BIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 2 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)V077-20160331
|k V077
|l AG Molekulare Mechanismen der Tumorzell-Invasion
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 1
920 1 _ |0 I:(DE-He78)D170-20160331
|k D170
|l Neuroimmunologie und Hirntumorimmunologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)V077-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)D170-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21