001     154285
005     20240229123059.0
024 7 _ |a 10.1016/j.stem.2020.03.003
|2 doi
024 7 _ |a pmid:32229311
|2 pmid
024 7 _ |a 1875-9777
|2 ISSN
024 7 _ |a 1934-5909
|2 ISSN
024 7 _ |a altmetric:78604085
|2 altmetric
037 _ _ |a DKFZ-2020-00711
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Sommerkamp, Pia
|0 P:(DE-He78)882f301adcd54a8844b2979973d672b9
|b 0
|e First author
245 _ _ |a Differential Alternative Polyadenylation Landscapes Mediate Hematopoietic Stem Cell Activation and Regulate Glutamine Metabolism.
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1684840141_8379
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH Alliance2020 May 7;26(5):722-738.e7#EA:A010#LA:A010#
520 _ _ |a Alternative polyadenylation (APA) is emerging as an important regulatory mechanism of RNA and protein isoform expression by controlling 3' untranslated region (3'-UTR) composition. The relevance of APA in stem cell hierarchies remains elusive. Here, we first demonstrate the requirement of the APA regulator Pabpn1 for hematopoietic stem cell (HSC) function. We then determine the genome-wide APA landscape (APAome) of HSCs and progenitors by performing low-input 3' sequencing paired with bioinformatic pipelines. This reveals transcriptome-wide dynamic APA patterns and an overall shortening of 3'-UTRs during differentiation and upon homeostatic or stress-induced transition from quiescence to proliferation. Specifically, we show that APA regulates activation-induced Glutaminase (Gls) isoform switching by Nudt21. This adaptation of the glutamine metabolism by increasing the GAC:KGA isoform ratio fuels versatile metabolic pathways necessary for HSC self-renewal and proper stress response. Our study establishes APA as a critical regulatory layer orchestrating HSC self-renewal, behavior, and commitment.
536 _ _ |a 311 - Signalling pathways, cell and tumor biology (POF3-311)
|0 G:(DE-HGF)POF3-311
|c POF3-311
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Altamura, Sandro
|b 1
700 1 _ |a Renders, Simon
|0 P:(DE-He78)59008c47a42b433b0328d0043b656ed2
|b 2
700 1 _ |a Narr, Andreas
|0 P:(DE-He78)93c82e53653d82bf5d1e8e40a9356c0e
|b 3
700 1 _ |a Ladel, Luisa
|0 P:(DE-He78)cd1dc282009ca84de9e5dba8fafa7142
|b 4
700 1 _ |a Zeisberger, Petra
|0 P:(DE-He78)a2e11989a461bebbb1ab7659e10c8d89
|b 5
700 1 _ |a Eiben, Paula Leonie
|0 P:(DE-He78)72293931dabd0aa6cc6dcf84383e6138
|b 6
700 1 _ |a Fawaz, Malak
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rieger, Michael A
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Cabezas-Wallscheid, Nina
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Trumpp, Andreas
|0 P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2
|b 10
|e Last author
773 _ _ |a 10.1016/j.stem.2020.03.003
|g p. S1934590920300953
|0 PERI:(DE-600)2375356-0
|n 5
|p 722-738.e7
|t Cell stem cell
|v 26
|y 2020
|x 1934-5909
909 C O |p VDB
|o oai:inrepo02.dkfz.de:154285
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)882f301adcd54a8844b2979973d672b9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)59008c47a42b433b0328d0043b656ed2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)93c82e53653d82bf5d1e8e40a9356c0e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)cd1dc282009ca84de9e5dba8fafa7142
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)a2e11989a461bebbb1ab7659e10c8d89
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)72293931dabd0aa6cc6dcf84383e6138
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Signalling pathways, cell and tumor biology
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL STEM CELL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b CELL STEM CELL : 2017
920 2 _ |0 I:(DE-He78)A010-20160331
|k A010
|l A010 Stammzellen und Krebs
|x 0
920 1 _ |0 I:(DE-He78)A010-20160331
|k A010
|l A010 Stammzellen und Krebs
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)V960-20160331
|k V960
|l HI-Stem
|x 2
920 0 _ |0 I:(DE-He78)A010-20160331
|k A010
|l A010 Stammzellen und Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A010-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)V960-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21