000154432 001__ 154432
000154432 005__ 20240229123101.0
000154432 0247_ $$2doi$$a10.1007/s10552-020-01272-6
000154432 0247_ $$2pmid$$apmid:32253639
000154432 0247_ $$2ISSN$$a0957-5243
000154432 0247_ $$2ISSN$$a1573-7225
000154432 037__ $$aDKFZ-2020-00760
000154432 041__ $$aeng
000154432 082__ $$a610
000154432 1001_ $$0P:(DE-He78)6519c85d61a3def7974665471b8a4f74$$aHüsing, Anika$$b0$$eFirst author$$udkfz
000154432 245__ $$aValidation of two US breast cancer risk prediction models in German women.
000154432 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V.$$c2020
000154432 3367_ $$2DRIVER$$aarticle
000154432 3367_ $$2DataCite$$aOutput Types/Journal article
000154432 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600867711_28209
000154432 3367_ $$2BibTeX$$aARTICLE
000154432 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154432 3367_ $$00$$2EndNote$$aJournal Article
000154432 500__ $$a2020 Jun;31(6):525-536#EA:C020#
000154432 520__ $$aThere are no models for German women that predict absolute risk of invasive breast cancer (BC), i.e., the probability of developing BC over a prespecified time period, given a woman's age and characteristics, while accounting for competing risks. We thus validated two absolute BC risk models (BCRAT, BCRmod) developed for US women in German women. BCRAT uses a woman's medical, reproductive, and BC family history; BCRmod adds modifiable risk factors (body mass index, hormone replacement therapy and alcohol use).We assessed model calibration by comparing observed BC numbers (O) to expected numbers (E) computed from BCRmod/BCRAT for German women enrolled in the prospective European Prospective Investigation into Cancer and Nutrition (EPIC), and after updating the models with German BC incidence/competing mortality rates. We also compared 1-year BC risk predicted for all German women using the German Health Interview and Examination Survey for Adults (DEGS) with overall German BC incidence. Discriminatory performance was quantified by the area under the receiver operator characteristics curve (AUC).Among 22,098 EPIC-Germany women aged 40+ years, 745 BCs occurred (median follow-up: 11.9 years). Both models had good calibration for total follow-up, EBCRmod/O = 1.08 (95% confidence interval: 0.95-1.21), and EBCRAT/O = 0.99(0.87-1.11), and over 5 years. Compared to German BC incidence rates, both models somewhat overestimated 1-year risk for women aged 55+ and 70+ years. For total follow-up, AUCBCRmod = 0.61(0.58-0.63) and AUCBCRAT = 0.58(0.56-0.61), with similar values for 5-year follow-up.US BC risk models showed adequate calibration in German women. Discriminatory performance was comparable to that in US women. These models thus could be applied for risk prediction in German women.
000154432 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000154432 588__ $$aDataset connected to CrossRef, PubMed,
000154432 7001_ $$aQuante, Anne S$$b1
000154432 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b2$$udkfz
000154432 7001_ $$aAleksandrova, Krasimira$$b3
000154432 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b4$$udkfz
000154432 7001_ $$00000-0001-7791-2698$$aPfeiffer, Ruth M$$b5
000154432 773__ $$0PERI:(DE-600)1496544-6$$a10.1007/s10552-020-01272-6$$n6$$p525-536$$tCancer causes & control$$v31$$x1573-7225$$y2020
000154432 909CO $$ooai:inrepo02.dkfz.de:154432$$pVDB
000154432 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6519c85d61a3def7974665471b8a4f74$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000154432 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000154432 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000154432 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000154432 9141_ $$y2020
000154432 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000154432 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000154432 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154432 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154432 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000154432 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCER CAUSE CONTROL : 2017
000154432 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000154432 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154432 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154432 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154432 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000154432 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000154432 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000154432 9200_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000154432 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000154432 980__ $$ajournal
000154432 980__ $$aVDB
000154432 980__ $$aI:(DE-He78)C020-20160331
000154432 980__ $$aUNRESTRICTED