001     154432
005     20240229123101.0
024 7 _ |a 10.1007/s10552-020-01272-6
|2 doi
024 7 _ |a pmid:32253639
|2 pmid
024 7 _ |a 0957-5243
|2 ISSN
024 7 _ |a 1573-7225
|2 ISSN
037 _ _ |a DKFZ-2020-00760
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Hüsing, Anika
|0 P:(DE-He78)6519c85d61a3def7974665471b8a4f74
|b 0
|e First author
|u dkfz
245 _ _ |a Validation of two US breast cancer risk prediction models in German women.
260 _ _ |a Dordrecht [u.a.]
|c 2020
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600867711_28209
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Jun;31(6):525-536#EA:C020#
520 _ _ |a There are no models for German women that predict absolute risk of invasive breast cancer (BC), i.e., the probability of developing BC over a prespecified time period, given a woman's age and characteristics, while accounting for competing risks. We thus validated two absolute BC risk models (BCRAT, BCRmod) developed for US women in German women. BCRAT uses a woman's medical, reproductive, and BC family history; BCRmod adds modifiable risk factors (body mass index, hormone replacement therapy and alcohol use).We assessed model calibration by comparing observed BC numbers (O) to expected numbers (E) computed from BCRmod/BCRAT for German women enrolled in the prospective European Prospective Investigation into Cancer and Nutrition (EPIC), and after updating the models with German BC incidence/competing mortality rates. We also compared 1-year BC risk predicted for all German women using the German Health Interview and Examination Survey for Adults (DEGS) with overall German BC incidence. Discriminatory performance was quantified by the area under the receiver operator characteristics curve (AUC).Among 22,098 EPIC-Germany women aged 40+ years, 745 BCs occurred (median follow-up: 11.9 years). Both models had good calibration for total follow-up, EBCRmod/O = 1.08 (95% confidence interval: 0.95-1.21), and EBCRAT/O = 0.99(0.87-1.11), and over 5 years. Compared to German BC incidence rates, both models somewhat overestimated 1-year risk for women aged 55+ and 70+ years. For total follow-up, AUCBCRmod = 0.61(0.58-0.63) and AUCBCRAT = 0.58(0.56-0.61), with similar values for 5-year follow-up.US BC risk models showed adequate calibration in German women. Discriminatory performance was comparable to that in US women. These models thus could be applied for risk prediction in German women.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Quante, Anne S
|b 1
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 2
|u dkfz
700 1 _ |a Aleksandrova, Krasimira
|b 3
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 4
|u dkfz
700 1 _ |a Pfeiffer, Ruth M
|0 0000-0001-7791-2698
|b 5
773 _ _ |a 10.1007/s10552-020-01272-6
|0 PERI:(DE-600)1496544-6
|n 6
|p 525-536
|t Cancer causes & control
|v 31
|y 2020
|x 1573-7225
909 C O |p VDB
|o oai:inrepo02.dkfz.de:154432
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)6519c85d61a3def7974665471b8a4f74
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER CAUSE CONTROL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 0 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21