Home > Publications database > Prediction of contralateral breast cancer: external validation of risk calculators in 20 international cohorts. > print |
001 | 154473 | ||
005 | 20240229123103.0 | ||
024 | 7 | _ | |a 10.1007/s10549-020-05611-8 |2 doi |
024 | 7 | _ | |a pmid:32279280 |2 pmid |
024 | 7 | _ | |a 0167-6806 |2 ISSN |
024 | 7 | _ | |a 1573-7217 |2 ISSN |
024 | 7 | _ | |a altmetric:79669796 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-00795 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Giardiello, Daniele |b 0 |
245 | _ | _ | |a Prediction of contralateral breast cancer: external validation of risk calculators in 20 international cohorts. |
260 | _ | _ | |a Dordrecht [u.a.] |c 2020 |b Springer Science + Business Media B.V. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1597931279_10393 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2020 Jun;181(2):423-434 |
520 | _ | _ | |a Three tools are currently available to predict the risk of contralateral breast cancer (CBC). We aimed to compare the performance of the Manchester formula, CBCrisk, and PredictCBC in patients with invasive breast cancer (BC).We analyzed data of 132,756 patients (4682 CBC) from 20 international studies with a median follow-up of 8.8 years. Prediction performance included discrimination, quantified as a time-dependent Area-Under-the-Curve (AUC) at 5 and 10 years after diagnosis of primary BC, and calibration, quantified as the expected-observed (E/O) ratio at 5 and 10 years and the calibration slope.The AUC at 10 years was: 0.58 (95% confidence intervals [CI] 0.57-0.59) for CBCrisk; 0.60 (95% CI 0.59-0.61) for the Manchester formula; 0.63 (95% CI 0.59-0.66) and 0.59 (95% CI 0.56-0.62) for PredictCBC-1A (for settings where BRCA1/2 mutation status is available) and PredictCBC-1B (for the general population), respectively. The E/O at 10 years: 0.82 (95% CI 0.51-1.32) for CBCrisk; 1.53 (95% CI 0.63-3.73) for the Manchester formula; 1.28 (95% CI 0.63-2.58) for PredictCBC-1A and 1.35 (95% CI 0.65-2.77) for PredictCBC-1B. The calibration slope was 1.26 (95% CI 1.01-1.50) for CBCrisk; 0.90 (95% CI 0.79-1.02) for PredictCBC-1A; 0.81 (95% CI 0.63-0.99) for PredictCBC-1B, and 0.39 (95% CI 0.34-0.43) for the Manchester formula.Current CBC risk prediction tools provide only moderate discrimination and the Manchester formula was poorly calibrated. Better predictors and re-calibration are needed to improve CBC prediction and to identify low- and high-CBC risk patients for clinical decision-making. |
536 | _ | _ | |a 319H - Addenda (POF3-319H) |0 G:(DE-HGF)POF3-319H |c POF3-319H |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Hauptmann, Michael |b 1 |
700 | 1 | _ | |a Steyerberg, Ewout W |b 2 |
700 | 1 | _ | |a Adank, Muriel A |b 3 |
700 | 1 | _ | |a Akdeniz, Delal |b 4 |
700 | 1 | _ | |a Blom, Jannet C |b 5 |
700 | 1 | _ | |a Blomqvist, Carl |b 6 |
700 | 1 | _ | |a Bojesen, Stig E |b 7 |
700 | 1 | _ | |a Bolla, Manjeet K |b 8 |
700 | 1 | _ | |a Brinkhuis, Mariël |b 9 |
700 | 1 | _ | |a Chang-Claude, Jenny |0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |b 10 |u dkfz |
700 | 1 | _ | |a Czene, Kamila |b 11 |
700 | 1 | _ | |a Devilee, Peter |b 12 |
700 | 1 | _ | |a Dunning, Alison M |b 13 |
700 | 1 | _ | |a Easton, Douglas F |b 14 |
700 | 1 | _ | |a Eccles, Diana M |b 15 |
700 | 1 | _ | |a Fasching, Peter A |b 16 |
700 | 1 | _ | |a Figueroa, Jonine |b 17 |
700 | 1 | _ | |a Flyger, Henrik |b 18 |
700 | 1 | _ | |a García-Closas, Montserrat |b 19 |
700 | 1 | _ | |a Haeberle, Lothar |b 20 |
700 | 1 | _ | |a Haiman, Christopher A |b 21 |
700 | 1 | _ | |a Hall, Per |b 22 |
700 | 1 | _ | |a Hamann, Ute |0 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b |b 23 |u dkfz |
700 | 1 | _ | |a Hopper, John L |b 24 |
700 | 1 | _ | |a Jager, Agnes |b 25 |
700 | 1 | _ | |a Jakubowska, Anna |b 26 |
700 | 1 | _ | |a Jung, Audrey |0 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9 |b 27 |u dkfz |
700 | 1 | _ | |a Keeman, Renske |b 28 |
700 | 1 | _ | |a Koppert, Linetta B |b 29 |
700 | 1 | _ | |a Kramer, Iris |b 30 |
700 | 1 | _ | |a Lambrechts, Diether |b 31 |
700 | 1 | _ | |a Le Marchand, Loic |b 32 |
700 | 1 | _ | |a Lindblom, Annika |b 33 |
700 | 1 | _ | |a Lubiński, Jan |b 34 |
700 | 1 | _ | |a Manoochehri, Mehdi |0 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc |b 35 |u dkfz |
700 | 1 | _ | |a Mariani, Luigi |b 36 |
700 | 1 | _ | |a Nevanlinna, Heli |b 37 |
700 | 1 | _ | |a Oldenburg, Hester S A |b 38 |
700 | 1 | _ | |a Pelders, Saskia |b 39 |
700 | 1 | _ | |a Pharoah, Paul D P |b 40 |
700 | 1 | _ | |a Shah, Mitul |b 41 |
700 | 1 | _ | |a Siesling, Sabine |b 42 |
700 | 1 | _ | |a Smit, Vincent T H B M |b 43 |
700 | 1 | _ | |a Southey, Melissa C |b 44 |
700 | 1 | _ | |a Tapper, William J |b 45 |
700 | 1 | _ | |a Tollenaar, Rob A E M |b 46 |
700 | 1 | _ | |a van den Broek, Alexandra J |b 47 |
700 | 1 | _ | |a van Deurzen, Carolien H M |b 48 |
700 | 1 | _ | |a van Leeuwen, Flora E |b 49 |
700 | 1 | _ | |a van Ongeval, Chantal |b 50 |
700 | 1 | _ | |a Van't Veer, Laura J |b 51 |
700 | 1 | _ | |a Wang, Qin |b 52 |
700 | 1 | _ | |a Wendt, Camilla |b 53 |
700 | 1 | _ | |a Westenend, Pieter J |b 54 |
700 | 1 | _ | |a Hooning, Maartje J |b 55 |
700 | 1 | _ | |a Schmidt, Marjanka K |b 56 |
773 | _ | _ | |a 10.1007/s10549-020-05611-8 |0 PERI:(DE-600)2004077-5 |n 2 |p 423-434 |t Breast cancer research and treatment |v 181 |y 2020 |x 1573-7217 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:154473 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 23 |6 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 27 |6 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 35 |6 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-319H |2 G:(DE-HGF)POF3-300 |v Addenda |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BREAST CANCER RES TR : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B072-20160331 |k B072 |l B072 Molekulargenetik des Mammarzinoms |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a I:(DE-He78)B072-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|