001     154473
005     20240229123103.0
024 7 _ |a 10.1007/s10549-020-05611-8
|2 doi
024 7 _ |a pmid:32279280
|2 pmid
024 7 _ |a 0167-6806
|2 ISSN
024 7 _ |a 1573-7217
|2 ISSN
024 7 _ |a altmetric:79669796
|2 altmetric
037 _ _ |a DKFZ-2020-00795
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Giardiello, Daniele
|b 0
245 _ _ |a Prediction of contralateral breast cancer: external validation of risk calculators in 20 international cohorts.
260 _ _ |a Dordrecht [u.a.]
|c 2020
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1597931279_10393
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Jun;181(2):423-434
520 _ _ |a Three tools are currently available to predict the risk of contralateral breast cancer (CBC). We aimed to compare the performance of the Manchester formula, CBCrisk, and PredictCBC in patients with invasive breast cancer (BC).We analyzed data of 132,756 patients (4682 CBC) from 20 international studies with a median follow-up of 8.8 years. Prediction performance included discrimination, quantified as a time-dependent Area-Under-the-Curve (AUC) at 5 and 10 years after diagnosis of primary BC, and calibration, quantified as the expected-observed (E/O) ratio at 5 and 10 years and the calibration slope.The AUC at 10 years was: 0.58 (95% confidence intervals [CI] 0.57-0.59) for CBCrisk; 0.60 (95% CI 0.59-0.61) for the Manchester formula; 0.63 (95% CI 0.59-0.66) and 0.59 (95% CI 0.56-0.62) for PredictCBC-1A (for settings where BRCA1/2 mutation status is available) and PredictCBC-1B (for the general population), respectively. The E/O at 10 years: 0.82 (95% CI 0.51-1.32) for CBCrisk; 1.53 (95% CI 0.63-3.73) for the Manchester formula; 1.28 (95% CI 0.63-2.58) for PredictCBC-1A and 1.35 (95% CI 0.65-2.77) for PredictCBC-1B. The calibration slope was 1.26 (95% CI 1.01-1.50) for CBCrisk; 0.90 (95% CI 0.79-1.02) for PredictCBC-1A; 0.81 (95% CI 0.63-0.99) for PredictCBC-1B, and 0.39 (95% CI 0.34-0.43) for the Manchester formula.Current CBC risk prediction tools provide only moderate discrimination and the Manchester formula was poorly calibrated. Better predictors and re-calibration are needed to improve CBC prediction and to identify low- and high-CBC risk patients for clinical decision-making.
536 _ _ |a 319H - Addenda (POF3-319H)
|0 G:(DE-HGF)POF3-319H
|c POF3-319H
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Hauptmann, Michael
|b 1
700 1 _ |a Steyerberg, Ewout W
|b 2
700 1 _ |a Adank, Muriel A
|b 3
700 1 _ |a Akdeniz, Delal
|b 4
700 1 _ |a Blom, Jannet C
|b 5
700 1 _ |a Blomqvist, Carl
|b 6
700 1 _ |a Bojesen, Stig E
|b 7
700 1 _ |a Bolla, Manjeet K
|b 8
700 1 _ |a Brinkhuis, Mariël
|b 9
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 10
|u dkfz
700 1 _ |a Czene, Kamila
|b 11
700 1 _ |a Devilee, Peter
|b 12
700 1 _ |a Dunning, Alison M
|b 13
700 1 _ |a Easton, Douglas F
|b 14
700 1 _ |a Eccles, Diana M
|b 15
700 1 _ |a Fasching, Peter A
|b 16
700 1 _ |a Figueroa, Jonine
|b 17
700 1 _ |a Flyger, Henrik
|b 18
700 1 _ |a García-Closas, Montserrat
|b 19
700 1 _ |a Haeberle, Lothar
|b 20
700 1 _ |a Haiman, Christopher A
|b 21
700 1 _ |a Hall, Per
|b 22
700 1 _ |a Hamann, Ute
|0 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
|b 23
|u dkfz
700 1 _ |a Hopper, John L
|b 24
700 1 _ |a Jager, Agnes
|b 25
700 1 _ |a Jakubowska, Anna
|b 26
700 1 _ |a Jung, Audrey
|0 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
|b 27
|u dkfz
700 1 _ |a Keeman, Renske
|b 28
700 1 _ |a Koppert, Linetta B
|b 29
700 1 _ |a Kramer, Iris
|b 30
700 1 _ |a Lambrechts, Diether
|b 31
700 1 _ |a Le Marchand, Loic
|b 32
700 1 _ |a Lindblom, Annika
|b 33
700 1 _ |a Lubiński, Jan
|b 34
700 1 _ |a Manoochehri, Mehdi
|0 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc
|b 35
|u dkfz
700 1 _ |a Mariani, Luigi
|b 36
700 1 _ |a Nevanlinna, Heli
|b 37
700 1 _ |a Oldenburg, Hester S A
|b 38
700 1 _ |a Pelders, Saskia
|b 39
700 1 _ |a Pharoah, Paul D P
|b 40
700 1 _ |a Shah, Mitul
|b 41
700 1 _ |a Siesling, Sabine
|b 42
700 1 _ |a Smit, Vincent T H B M
|b 43
700 1 _ |a Southey, Melissa C
|b 44
700 1 _ |a Tapper, William J
|b 45
700 1 _ |a Tollenaar, Rob A E M
|b 46
700 1 _ |a van den Broek, Alexandra J
|b 47
700 1 _ |a van Deurzen, Carolien H M
|b 48
700 1 _ |a van Leeuwen, Flora E
|b 49
700 1 _ |a van Ongeval, Chantal
|b 50
700 1 _ |a Van't Veer, Laura J
|b 51
700 1 _ |a Wang, Qin
|b 52
700 1 _ |a Wendt, Camilla
|b 53
700 1 _ |a Westenend, Pieter J
|b 54
700 1 _ |a Hooning, Maartje J
|b 55
700 1 _ |a Schmidt, Marjanka K
|b 56
773 _ _ |a 10.1007/s10549-020-05611-8
|0 PERI:(DE-600)2004077-5
|n 2
|p 423-434
|t Breast cancer research and treatment
|v 181
|y 2020
|x 1573-7217
909 C O |p VDB
|o oai:inrepo02.dkfz.de:154473
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 35
|6 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-319H
|2 G:(DE-HGF)POF3-300
|v Addenda
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BREAST CANCER RES TR : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)B072-20160331
|k B072
|l B072 Molekulargenetik des Mammarzinoms
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)B072-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21