001     154638
005     20240229123108.0
024 7 _ |a 10.1089/bio.2019.0129
|2 doi
024 7 _ |a pmid:32302498
|2 pmid
024 7 _ |a 1538-344X
|2 ISSN
024 7 _ |a 1557-8119
|2 ISSN
024 7 _ |a 1947-5535
|2 ISSN
024 7 _ |a 1947-5543
|2 ISSN
024 7 _ |a altmetric:80826266
|2 altmetric
037 _ _ |a DKFZ-2020-00905
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Eklund, Niina
|b 0
245 _ _ |a Extending the Minimum Information About BIobank Data Sharing Terminology to Describe Samples, Sample Donors, and Events.
260 _ _ |a New Rochelle, NY
|c 2020
|b Liebert
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625577544_25692
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Jun;18(3):155-164
520 _ _ |a Introduction: The Minimum Information About BIobank data Sharing (MIABIS) was initiated in 2012. MIABIS aims to create a common biobank terminology to facilitate data sharing in biobanks and sample collections. The MIABIS Core terminology consists of three components describing biobanks, sample collections, and studies, in which information on samples and sample donors is provided at aggregated form. However, there is also a need to describe samples and sample donors at an individual level to allow more elaborate queries on available biobank samples and data. Therefore the MIABIS terminology has now been extended with components describing samples and sample donors at an individual level. Materials and Methods: The components were defined according to specific scope and use cases by a large group of experts, and through several cycles of reviews, according to the new MIABIS governance model of BBMRI-ERIC (Biobanking and Biomolecular Resources Research Infrastructure-European Research Infrastructure Consortium). The guiding principles applied in developing these components included the following terms: model should consider only samples of human origin, model should be applicable to all types of samples and all sample donors, and model should describe the current status of samples stored in a given biobank. Results: A minimal set of standard attributes for defining samples and sample donors is presented here. We added an 'event' component to describe attributes that are not directly describing samples or sample donors but are tightly related to them. To better utilize the generic data model, we suggest a procedure by which interoperability can be promoted, using specific MIABIS profiles. Discussion: The MIABIS sample and donor component extensions and the new generic data model complement the existing MIABIS Core 2.0 components, and substantially increase the potential usability of this terminology for better describing biobank samples and sample donors. They also support the use of individual level data about samples and sample donors to obtain accurate and detailed biobank availability queries.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Andrianarisoa, Ny Haingo
|b 1
700 1 _ |a van Enckevort, Esther
|b 2
700 1 _ |a Anton, Gabriele
|b 3
700 1 _ |a Debucquoy, Annelies
|b 4
700 1 _ |a Müller, Heimo
|b 5
700 1 _ |a Zaharenko, Linda
|b 6
700 1 _ |a Engels, Cäcilia
|b 7
700 1 _ |a Ebert, Lars
|0 P:(DE-He78)5ca10af01fb0406fe8238af89b742667
|b 8
|u dkfz
700 1 _ |a Neumann, Michael
|b 9
700 1 _ |a Geeraert, Joachim
|b 10
700 1 _ |a T'Joen, Veronique
|b 11
700 1 _ |a Demski, Hans
|b 12
700 1 _ |a Caboux, Élodie
|b 13
700 1 _ |a Proynova, Rumyana
|0 P:(DE-He78)c0313b77e0c44cd2f5eb85b747c88be0
|b 14
|u dkfz
700 1 _ |a Parodi, Barbara
|b 15
700 1 _ |a Mate, Sebastian
|b 16
700 1 _ |a van Iperen, Erik
|b 17
700 1 _ |a Merino-Martinez, Roxana
|b 18
700 1 _ |a Quinlan, Philip R
|b 19
700 1 _ |a Holub, Petr
|b 20
700 1 _ |a Silander, Kaisa
|b 21
773 _ _ |a 10.1089/bio.2019.0129
|g p. bio.2019.0129
|0 PERI:(DE-600)2593993-2
|n 3
|p 155-164
|t Biopreservation and biobanking
|v 18
|y 2020
|x 1947-5543
909 C O |p VDB
|o oai:inrepo02.dkfz.de:154638
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)5ca10af01fb0406fe8238af89b742667
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)c0313b77e0c44cd2f5eb85b747c88be0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 2 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOPRESERV BIOBANK : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E260-20160331
|k E260
|l Verbundinformationssysteme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E260-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21