000154707 001__ 154707
000154707 005__ 20240229123109.0
000154707 0247_ $$2doi$$a10.1016/j.ijrobp.2020.04.029
000154707 0247_ $$2pmid$$apmid:32361008
000154707 0247_ $$2ISSN$$a0360-3016
000154707 0247_ $$2ISSN$$a1879-355X
000154707 0247_ $$2altmetric$$aaltmetric:80966903
000154707 037__ $$aDKFZ-2020-00965
000154707 041__ $$aeng
000154707 082__ $$a610
000154707 1001_ $$0P:(DE-HGF)0$$aFabiano, Silvia$$b0
000154707 245__ $$aAccounting for range uncertainties in the optimization of combined proton-photon treatments via stochastic optimization.
000154707 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000154707 3367_ $$2DRIVER$$aarticle
000154707 3367_ $$2DataCite$$aOutput Types/Journal article
000154707 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603111771_18443
000154707 3367_ $$2BibTeX$$aARTICLE
000154707 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154707 3367_ $$00$$2EndNote$$aJournal Article
000154707 500__ $$a2020 Nov 1;108(3):792-801
000154707 520__ $$aProton treatment slots are still a limited resource. Combined proton-photon treatments, in which most fractions are delivered with photons and only a few with protons, may represent a practical solution to optimize the allocation of proton resources over the patient population. We demonstrate how a limited number of proton fractions can be optimally used in multi-modality treatments, also addressing the issue of the robustness of combined treatments against proton range uncertainties.Combined proton-photon treatments are planned by simultaneously optimizing intensity-modulated radiation therapy (IMRT) and proton therapy (IMPT) plans while accounting for the fractionation effect through the biologically effective dose (BED) model. The method is investigated for different tumor sites (a spinal metastasis, a sacral chordoma, and an atypical meningioma) in which organs at risk (OARs) are located within or near the tumor. Stochastic optimization is applied to mitigate range uncertainties.In optimal combinations, proton and photon fractions deliver similar doses to OARs overlaying the target volume to protect these dose-limiting normal tissues through fractionation. Meanwhile, parts of the tumor are hypofractionated with protons. Thus, the total dose delivered with photons is reduced compared to simple combinations where each modality delivers the prescribed dose per fraction to the target volume. The benefit of optimal combinations persists when range errors are accounted for via stochastic optimization.Limited proton resources are optimally used in combined treatments if parts of the tumor are hypofractionated with protons while near-uniform fractionation is maintained in serial OARs. Proton range uncertainties can be efficiently accounted for through stochastic optimization and are not an obstacle for clinical application.
000154707 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000154707 588__ $$aDataset connected to CrossRef, PubMed,
000154707 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b1
000154707 7001_ $$aGuckenberger, Matthias$$b2
000154707 7001_ $$aUnkelbach, Jan$$b3
000154707 773__ $$0PERI:(DE-600)1500486-7$$a10.1016/j.ijrobp.2020.04.029$$gp. S0360301620310555$$n3$$p792-801$$tInternational journal of radiation oncology, biology, physics$$v108$$x0360-3016$$y2020
000154707 909CO $$ooai:inrepo02.dkfz.de:154707$$pVDB
000154707 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000154707 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000154707 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000154707 9141_ $$y2020
000154707 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000154707 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J RADIAT ONCOL : 2017
000154707 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154707 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154707 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000154707 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000154707 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000154707 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000154707 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154707 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154707 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154707 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000154707 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000154707 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J RADIAT ONCOL : 2017
000154707 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000154707 980__ $$ajournal
000154707 980__ $$aVDB
000154707 980__ $$aI:(DE-He78)E040-20160331
000154707 980__ $$aUNRESTRICTED