001     154767
005     20240229120024.0
024 7 _ |2 doi
|a 10.1016/j.cellimm.2017.10.013
024 7 _ |2 pmid
|a pmid:29129292
024 7 _ |2 ISSN
|a 0008-8749
024 7 _ |2 ISSN
|a 1090-2163
024 7 _ |2 altmetric
|a altmetric:79972033
037 _ _ |a DKFZ-2020-01014
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Schupp, Jonathan
|b 0
245 _ _ |a Targeting myeloid cells in the tumor sustaining microenvironment.
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1589283740_32506
|x Review Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Myeloid cells are the most abundant cells in the tumor microenvironment (TME). The tumor recruits and modulates endogenous myeloid cells to tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC) and neutrophils (TAN), to sustain an immunosuppressive environment. Pathologically overexpressed mediators produced by cancer cells like granulocyte-macrophage colony-stimulating- and vascular endothelial growth factor induce myelopoiesis in the bone marrow. Excess of myeloid cells in the blood, periphery and tumor has been associated with tumor burden. In cancer, myeloid cells are kept at an immature state of differentiation to be diverted to an immunosuppressive phenotype. Here, we review human myeloid cells in the TME and the mechanisms for sustaining the hallmarks of cancer. Simultaneously, we provide an introduction into current and novel therapeutic approaches to redirect myeloid cells from a cancer promoting to a rather inflammatory, cancer inhibiting phenotype. In addition, the role of platelets for tumor promotion is discussed.
536 _ _ |0 G:(DE-HGF)POF3-899
|a 899 - ohne Topic (POF3-899)
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |0 P:(DE-He78)41a3eb2e61458591611a88a36b66a5f3
|a Krebs, Franziska
|b 1
700 1 _ |a Zimmer, Niklas
|b 2
700 1 _ |a Trzeciak, Emily
|b 3
700 1 _ |a Schuppan, Detlef
|b 4
700 1 _ |a Tuettenberg, Andrea
|b 5
773 _ _ |0 PERI:(DE-600)1462601-9
|a 10.1016/j.cellimm.2017.10.013
|g Vol. 343, p. 103713 -
|p 103713
|t Cellular immunology
|v 343
|x 0008-8749
|y 2019
909 C O |o oai:inrepo02.dkfz.de:154767
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)41a3eb2e61458591611a88a36b66a5f3
|a Deutsches Krebsforschungszentrum
|b 1
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b CELL IMMUNOL : 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-He78)L501-20160331
|k L501
|l DKTK Frankfurt
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)L501-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21