001     156769
005     20240229133505.0
024 7 _ |a 10.1136/jmedgenet-2020-106961
|2 doi
024 7 _ |a pmid:32591343
|2 pmid
024 7 _ |a 0022-2593
|2 ISSN
024 7 _ |a 1468-6244
|2 ISSN
024 7 _ |a altmetric:84896413
|2 altmetric
037 _ _ |a DKFZ-2020-01093
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Galeotti, Alice Alessandra
|0 P:(DE-He78)968599a64363d6e5be39515f3ef8a598
|b 0
|e First author
245 _ _ |a Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction.
260 _ _ |a London
|c 2021
|b BMJ Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1622098741_23346
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Jun;58(6):369-377#EA:C055#
520 _ _ |a Most cases of pancreatic ductal adenocarcinoma (PDAC) are asymptomatic in early stages, and the disease is typically diagnosed in advanced phases, resulting in very high mortality. Tools to identify individuals at high risk of developing PDAC would be useful to improve chances of early detection.We generated a polygenic risk score (PRS) for PDAC risk prediction, combining the effect of known risk SNPs, and carried out an exploratory analysis of a multifactorial score.We tested the associations of the individual known risk SNPs on up to 2851 PDAC cases and 4810 controls of European origin from the PANcreatic Disease ReseArch (PANDoRA) consortium. Thirty risk SNPs were included in a PRS, which was computed on the subset of subjects that had 100% call rate, consisting of 839 cases and 2040 controls in PANDoRA and 6420 cases and 4889 controls from the previously published Pancreatic Cancer Cohort Consortium I-III and Pancreatic Cancer Case-Control Consortium genome-wide association studies. Additional exploratory multifactorial scores were constructed by complementing the genetic score with smoking and diabetes.The scores were associated with increased PDAC risk and reached high statistical significance (OR=2.70, 95% CI 1.99 to 3.68, p=2.54×10-10 highest vs lowest quintile of the weighted PRS, and OR=14.37, 95% CI 5.57 to 37.09, p=3.64×10-8, highest vs lowest quintile of the weighted multifactorial score).We found a highly significant association between a PRS and PDAC risk, which explains more than individual SNPs and is a step forward in the direction of the construction of a tool for risk stratification in the population.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Gentiluomo, Manuel
|b 1
700 1 _ |a Rizzato, Cosmeri
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Obazee, Ofure Mary Ann
|0 P:(DE-He78)ac7a26c496af814293aa74ab92d5f5b3
|b 3
700 1 _ |a Neoptolemos, John P
|b 4
700 1 _ |a Pasquali, Claudio
|b 5
700 1 _ |a Nentwich, Michael
|b 6
700 1 _ |a Cavestro, Giulia Martina
|b 7
700 1 _ |a Pezzilli, Raffaele
|b 8
700 1 _ |a Greenhalf, William
|b 9
700 1 _ |a Holleczek, Bernd
|0 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
|b 10
|u dkfz
700 1 _ |a Schroeder, Cornelia
|b 11
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 12
|u dkfz
700 1 _ |a Ivanauskas, Audrius
|b 13
700 1 _ |a Ginocchi, Laura
|b 14
700 1 _ |a Key, Timothy J
|b 15
700 1 _ |a Hegyi, Péter
|b 16
700 1 _ |a Archibugi, Livia
|b 17
700 1 _ |a Darvasi, Erika
|b 18
700 1 _ |a Basso, Daniela
|b 19
700 1 _ |a Sperti, Cosimo
|b 20
700 1 _ |a Bijlsma, Maarten F
|b 21
700 1 _ |a Palmieri, Orazio
|0 0000-0002-0019-7929
|b 22
700 1 _ |a Hlavac, Viktor
|b 23
700 1 _ |a Talar-Wojnarowska, Renata
|b 24
700 1 _ |a Mohelnikova-Duchonova, Beatrice
|b 25
700 1 _ |a Hackert, Thilo
|b 26
700 1 _ |a Vashist, Yogesh
|b 27
700 1 _ |a Strouhal, Ondrej
|b 28
700 1 _ |a van Laarhoven, Hanneke
|b 29
700 1 _ |a Tavano, Francesca
|b 30
700 1 _ |a Lovecek, Martin
|b 31
700 1 _ |a Dervenis, Christos
|b 32
700 1 _ |a Izbéki, Ferenc
|b 33
700 1 _ |a Padoan, Andrea
|b 34
700 1 _ |a Małecka-Panas, Ewa
|b 35
700 1 _ |a Maiello, Evaristo
|b 36
700 1 _ |a Vanella, Giuseppe
|b 37
700 1 _ |a Capurso, Gabriele
|b 38
700 1 _ |a Izbicki, Jakob R
|b 39
700 1 _ |a Theodoropoulos, George E
|b 40
700 1 _ |a Jamroziak, Krzysztof
|b 41
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 42
|u dkfz
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 43
|u dkfz
700 1 _ |a Mambrini, Andrea
|b 44
700 1 _ |a Papanikolaou, Ioannis S
|b 45
700 1 _ |a Szmola, Richárd
|b 46
700 1 _ |a Szentesi, Andrea
|b 47
700 1 _ |a Kupcinskas, Juozas
|b 48
700 1 _ |a Bursi, Simona
|b 49
700 1 _ |a Costello, Eithne
|b 50
700 1 _ |a Boggi, Ugo
|b 51
700 1 _ |a Milanetto, Anna Caterina
|b 52
700 1 _ |a Landi, Stefano
|b 53
700 1 _ |a Gazouli, Maria
|0 0000-0002-3295-6811
|b 54
700 1 _ |a Vodickova, Ludmila
|b 55
700 1 _ |a Soucek, Pavel
|b 56
700 1 _ |a Gioffreda, Domenica
|b 57
700 1 _ |a Gemignani, Federica
|b 58
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 59
|u dkfz
700 1 _ |a Strobel, Oliver
|b 60
700 1 _ |a Büchler, Markus
|b 61
700 1 _ |a Vodicka, Pavel
|b 62
700 1 _ |a Paiella, Salvatore
|b 63
700 1 _ |a Canzian, Federico
|0 P:(DE-He78)5323704270b6393dcea70186ffd86bca
|b 64
|u dkfz
700 1 _ |a Campa, Daniele
|b 65
773 _ _ |a 10.1136/jmedgenet-2020-106961
|g p. jmedgenet-2020-106961 -
|0 PERI:(DE-600)2009590-9
|n 6
|p 369-377
|t Journal of medical genetics
|v 58
|y 2021
|x 1468-6244
909 C O |o oai:inrepo02.dkfz.de:156769
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)ac7a26c496af814293aa74ab92d5f5b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 42
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 43
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 59
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 64
|6 P:(DE-He78)5323704270b6393dcea70186ffd86bca
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MED GENET : 2018
|d 2020-01-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MED GENET : 2018
|d 2020-01-11
920 1 _ |0 I:(DE-He78)C055-20160331
|k C055
|l C055 Genomische Epidemiologie
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 2
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 3
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 4
920 0 _ |0 I:(DE-He78)C055-20160331
|k C055
|l C055 Genomische Epidemiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C055-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21