000156805 001__ 156805
000156805 005__ 20240229123116.0
000156805 0247_ $$2doi$$a10.1016/j.celrep.2020.107806
000156805 0247_ $$2pmid$$apmid:32579932
000156805 0247_ $$2ISSN$$a2211-1247
000156805 0247_ $$2ISSN$$a2639-1856
000156805 0247_ $$2altmetric$$aaltmetric:84567709
000156805 037__ $$aDKFZ-2020-01122
000156805 041__ $$aeng
000156805 082__ $$a610
000156805 1001_ $$aTriki, Mouna$$b0
000156805 245__ $$amTOR Signaling and SREBP Activity Increase FADS2 Expression and Can Activate Sapienate Biosynthesis.
000156805 260__ $$a[New York, NY]$$bElsevier$$c2020
000156805 3367_ $$2DRIVER$$aarticle
000156805 3367_ $$2DataCite$$aOutput Types/Journal article
000156805 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666617108_11981
000156805 3367_ $$2BibTeX$$aARTICLE
000156805 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156805 3367_ $$00$$2EndNote$$aJournal Article
000156805 520__ $$aCancer cells display an increased plasticity in their lipid metabolism, which includes the conversion of palmitate to sapienate via the enzyme fatty acid desaturase 2 (FADS2). We find that FADS2 expression correlates with mammalian target of rapamycin (mTOR) signaling and sterol regulatory element-binding protein 1 (SREBP-1) activity across multiple cancer types and is prognostic in some cancer types. Accordingly, activating mTOR signaling by deleting tuberous sclerosis complex 2 (Tsc2) or overexpression of SREBP-1/2 is sufficient to increase FADS2 mRNA expression and sapienate metabolism in mouse embryonic fibroblasts (MEFs) and U87 glioblastoma cells, respectively. Conversely, inhibiting mTOR signaling decreases FADS2 expression and sapienate biosynthesis in MEFs with Tsc2 deletion, HUH7 hepatocellular carcinoma cells, and orthotopic HUH7 liver xenografts. In conclusion, we show that mTOR signaling and SREBP activity are sufficient to activate sapienate metabolism by increasing FADS2 expression. Consequently, targeting mTOR signaling can reduce sapienate metabolism in vivo.
000156805 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000156805 588__ $$aDataset connected to CrossRef, PubMed,
000156805 7001_ $$aRinaldi, Gianmarco$$b1
000156805 7001_ $$aPlanque, Melanie$$b2
000156805 7001_ $$aBroekaert, Dorien$$b3
000156805 7001_ $$0P:(DE-He78)a2efd829a4ed4177427f4ceeafa06a3c$$aWinkelkotte, Alina M$$b4$$udkfz
000156805 7001_ $$aMaier, Carina R$$b5
000156805 7001_ $$aJanaki Raman, Sudha$$b6
000156805 7001_ $$aVandekeere, Anke$$b7
000156805 7001_ $$aVan Elsen, Joke$$b8
000156805 7001_ $$aOrth, Martin F$$b9
000156805 7001_ $$0P:(DE-He78)7a590ab95c6f7ba52880452da78ecd6c$$aGrünewald, Thomas G P$$b10$$udkfz
000156805 7001_ $$0P:(DE-He78)94ae391f53fb9285e1b68f9930615af1$$aSchulze, Almut$$b11$$udkfz
000156805 7001_ $$aFendt, Sarah-Maria$$b12
000156805 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2020.107806$$gVol. 31, no. 12, p. 107806 -$$n12$$p107806$$tCell reports$$v31$$x2211-1247$$y2020
000156805 909CO $$ooai:inrepo02.dkfz.de:156805$$pVDB
000156805 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a2efd829a4ed4177427f4ceeafa06a3c$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000156805 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7a590ab95c6f7ba52880452da78ecd6c$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000156805 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)94ae391f53fb9285e1b68f9930615af1$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000156805 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000156805 9141_ $$y2020
000156805 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2018$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-17
000156805 915__ $$0LIC:(DE-HGF)CCBYNCNDNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)$$bDOAJ$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2018$$d2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-17
000156805 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-17
000156805 9201_ $$0I:(DE-He78)A410-20160331$$kA410$$lMetabolismus und Microenvironment$$x0
000156805 9201_ $$0I:(DE-He78)B410-20160331$$kB410$$lTranslationale Pädiatrische Sarkomforschung$$x1
000156805 9201_ $$0I:(DE-He78)MU01-20160331$$kMU01$$lDKTK MU LMU zentral$$x2
000156805 980__ $$ajournal
000156805 980__ $$aVDB
000156805 980__ $$aI:(DE-He78)A410-20160331
000156805 980__ $$aI:(DE-He78)B410-20160331
000156805 980__ $$aI:(DE-He78)MU01-20160331
000156805 980__ $$aUNRESTRICTED