000156819 001__ 156819 000156819 005__ 20240229123117.0 000156819 0247_ $$2pmid$$apmid:32570571 000156819 0247_ $$2ISSN$$a0926-9630 000156819 0247_ $$2ISSN$$a1879-8365 000156819 0247_ $$2doi$$a10.3233/SHTI200354 000156819 037__ $$aDKFZ-2020-01136 000156819 041__ $$aeng 000156819 082__ $$a300 000156819 1001_ $$aUlrich, Hannes$$b0 000156819 245__ $$aA Smart Mapping Editor for Standardised Data Transformation. 000156819 260__ $$aAmsterdam$$bIOS Press$$c2020 000156819 3367_ $$2DRIVER$$aarticle 000156819 3367_ $$2DataCite$$aOutput Types/Journal article 000156819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602753601_3330 000156819 3367_ $$2BibTeX$$aARTICLE 000156819 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000156819 3367_ $$00$$2EndNote$$aJournal Article 000156819 520__ $$aThe integration of heterogeneous healthcare data sources is a necessary process to enable the secondary use valuable information in clinical research. Data integration is time-consuming for data stewards. The transformation using predefined rules for data harmonization can reduce the time-consuming and error-prone work and ease the data integration at various sites. In our study, we examined various script(ing) languages to find the most suitable candidate for definition of transformation rules and implement a smart editor which supports the data stewards in selecting rules reusing them. Thereby, it also provides an automatic and seamless documentation to strengthen the reliability of the defined transformation rules. 000156819 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0 000156819 588__ $$aDataset connected to PubMed, 000156819 7001_ $$aGermer, Sebastian$$b1 000156819 7001_ $$aKock-Schoppenhauer, Ann-Kristin$$b2 000156819 7001_ $$0P:(DE-He78)a2a7355881803969298582b28c64c64a$$aKern, Jori$$b3$$udkfz 000156819 7001_ $$0P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aLablans, Martin$$b4$$udkfz 000156819 7001_ $$aIngenerf, Josef$$b5 000156819 773__ $$0PERI:(DE-600)1088535-3$$a10.3233/SHTI200354 $$gVol. 270$$p1185-1186$$tStudies in health technology and informatics$$v270$$x0926-9630$$y2020 000156819 909CO $$ooai:inrepo02.dkfz.de:156819$$pVDB 000156819 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a2a7355881803969298582b28c64c64a$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000156819 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ 000156819 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000156819 9141_ $$y2020 000156819 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000156819 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000156819 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000156819 9201_ $$0I:(DE-He78)E260-20160331$$kE260$$lVerbundinformationssysteme$$x0 000156819 980__ $$ajournal 000156819 980__ $$aVDB 000156819 980__ $$aI:(DE-He78)E260-20160331 000156819 980__ $$aUNRESTRICTED