000156819 001__ 156819
000156819 005__ 20240229123117.0
000156819 0247_ $$2pmid$$apmid:32570571
000156819 0247_ $$2ISSN$$a0926-9630
000156819 0247_ $$2ISSN$$a1879-8365
000156819 0247_ $$2doi$$a10.3233/SHTI200354 
000156819 037__ $$aDKFZ-2020-01136
000156819 041__ $$aeng
000156819 082__ $$a300
000156819 1001_ $$aUlrich, Hannes$$b0
000156819 245__ $$aA Smart Mapping Editor for Standardised Data Transformation.
000156819 260__ $$aAmsterdam$$bIOS Press$$c2020
000156819 3367_ $$2DRIVER$$aarticle
000156819 3367_ $$2DataCite$$aOutput Types/Journal article
000156819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602753601_3330
000156819 3367_ $$2BibTeX$$aARTICLE
000156819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156819 3367_ $$00$$2EndNote$$aJournal Article
000156819 520__ $$aThe integration of heterogeneous healthcare data sources is a necessary process to enable the secondary use valuable information in clinical research. Data integration is time-consuming for data stewards. The transformation using predefined rules for data harmonization can reduce the time-consuming and error-prone work and ease the data integration at various sites. In our study, we examined various script(ing) languages to find the most suitable candidate for definition of transformation rules and implement a smart editor which supports the data stewards in selecting rules reusing them. Thereby, it also provides an automatic and seamless documentation to strengthen the reliability of the defined transformation rules.
000156819 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000156819 588__ $$aDataset connected to PubMed,
000156819 7001_ $$aGermer, Sebastian$$b1
000156819 7001_ $$aKock-Schoppenhauer, Ann-Kristin$$b2
000156819 7001_ $$0P:(DE-He78)a2a7355881803969298582b28c64c64a$$aKern, Jori$$b3$$udkfz
000156819 7001_ $$0P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aLablans, Martin$$b4$$udkfz
000156819 7001_ $$aIngenerf, Josef$$b5
000156819 773__ $$0PERI:(DE-600)1088535-3$$a10.3233/SHTI200354 $$gVol. 270$$p1185-1186$$tStudies in health technology and informatics$$v270$$x0926-9630$$y2020
000156819 909CO $$ooai:inrepo02.dkfz.de:156819$$pVDB
000156819 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a2a7355881803969298582b28c64c64a$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000156819 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000156819 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000156819 9141_ $$y2020
000156819 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000156819 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000156819 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000156819 9201_ $$0I:(DE-He78)E260-20160331$$kE260$$lVerbundinformationssysteme$$x0
000156819 980__ $$ajournal
000156819 980__ $$aVDB
000156819 980__ $$aI:(DE-He78)E260-20160331
000156819 980__ $$aUNRESTRICTED