001     156827
005     20240229123117.0
024 7 _ |a 10.1053/j.gastro.2020.06.021
|2 doi
024 7 _ |a pmid:32562722
|2 pmid
024 7 _ |a 0016-5085
|2 ISSN
024 7 _ |a 1528-0012
|2 ISSN
024 7 _ |a altmetric:84308290
|2 altmetric
037 _ _ |a DKFZ-2020-01144
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Echle, Amelie
|b 0
245 _ _ |a Clinical-grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning.
260 _ _ |a Philadelphia, Pa. [u.a.]
|c 2020
|b Saunders
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634801646_5773
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Oct;159(4):1406-1416.e11
520 _ _ |a Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and cheaper than molecular assays. But clinical application of this technology requires high performance and multisite validation, which have not yet been performed.We collected hematoxylin and eosin-stained slides, and findings from molecular analyses for MSI and dMMR, from 8836 colorectal tumors (of all stages) included in the MSIDETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (n=6406 specimens) and validated in an external cohort (n=771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC).The deep-learning detector identified specimens with dMMR or MSI with a mean AUROC curve of 0.92 (lower bound 0.91, upper bound 0.93) and an AUPRC of 0.63 (range, 0.59-0.65), or 67% specificity and 95% sensitivity, in the cross-validation development cohort. In the validation cohort, the classifier identified samples with dMMR with an AUROC curve of 0.95 (range, 0.92-0.96) without image-preprocessing and an AUROC curve of 0.96 (range, 0.93-0.98) after color normalization.We developed a deep-learning system that detects colorectal cancer specimens with dMMR or MSI using hematoxylin and eosin-stained slides; it detected tissues with dMMR with an AUROC of 0.96 in a large, international validation cohort. This system might be used for high-throughput, low-cost evaluation of colorectal tissue specimens.
536 _ _ |a 314 - Tumor immunology (POF3-314)
|0 G:(DE-HGF)POF3-314
|c POF3-314
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Grabsch, Heike Irmgard
|b 1
700 1 _ |a Quirke, Philip
|b 2
700 1 _ |a van den Brandt, Piet A
|b 3
700 1 _ |a West, Nicholas P
|b 4
700 1 _ |a Hutchins, Gordon G A
|b 5
700 1 _ |a Heij, Lara R
|b 6
700 1 _ |a Tan, Xiuxiang
|b 7
700 1 _ |a Richman, Susan D
|b 8
700 1 _ |a Krause, Jeremias
|b 9
700 1 _ |a Alwers, Elizabeth
|0 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
|b 10
700 1 _ |a Jenniskens, Josien
|b 11
700 1 _ |a Offermans, Kelly
|b 12
700 1 _ |a Gray, Richard
|b 13
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 14
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 15
700 1 _ |a Trautwein, Christian
|b 16
700 1 _ |a Pearson, Alexander T
|b 17
700 1 _ |a Boor, Peter
|b 18
700 1 _ |a Luedde, Tom
|b 19
700 1 _ |a Gaisa, Nadine Therese
|b 20
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 21
700 1 _ |a Nikolas Kather, Jakob
|0 P:(DE-HGF)0
|b 22
773 _ _ |a 10.1053/j.gastro.2020.06.021
|g p. S0016508520348186
|0 PERI:(DE-600)1478699-0
|n 4
|p 1406-1416.e11
|t Gastroenterology
|v 159
|y 2020
|x 0016-5085
909 C O |p VDB
|o oai:inrepo02.dkfz.de:156827
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-314
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Tumor immunology
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-15
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-15
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GASTROENTEROLOGY : 2018
|d 2020-01-15
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b GASTROENTEROLOGY : 2018
|d 2020-01-15
920 2 _ |0 I:(DE-He78)D120-20160331
|k D120
|l D120 Angewandte Tumor-Immunität
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21