001     156897
005     20240229133153.0
024 7 _ |a 10.1161/CIRCGEN.119.002766
|2 doi
024 7 _ |a pmid:32525743
|2 pmid
024 7 _ |a 1942-325X
|2 ISSN
024 7 _ |a 1942-3268
|2 ISSN
024 7 _ |a 2574-8300
|2 ISSN
024 7 _ |a altmetric:83910440
|2 altmetric
037 _ _ |a DKFZ-2020-01204
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Ma, Jiantao
|b 0
245 _ _ |a Whole Blood DNA Methylation Signatures of Diet Are Associated with Cardiovascular Disease Risk Factors and All-cause Mortality.
260 _ _ |a Philadelphia, Pa.
|c 2020
|b Lippincott, Williams & Wilkins61064
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636705187_5414
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Aug;13(4):e002766
520 _ _ |a Background - DNA methylation patterns associated with habitual diet have not been well studied. Methods - Diet quality was characterized using a Mediterranean-style diet score (MDS) and the Alternative Healthy Eating Index score (AHEI). We conducted ethnicity-specific and trans-ethnic epigenome-wide association analyses for diet quality and leukocyte-derived DNA methylation at over 400,000 cytosine-guanine dinucleotides (CpGs) in five population-based cohorts including 6,662 European ancestry (EA), 2,702 African ancestry (AA), and 360 Hispanic ancestry (HA) participants. For diet-associated CpGs identified in epigenome-wide analyses, we conducted Mendelian randomization (MR) analysis to examine their relations to cardiovascular disease (CVD) risk factors and examined their longitudinal associations with all-cause mortality. Results - We identified 30 CpGs associated with either MDS or AHEI, or both, in EA participants. Among these CpGs, 12 CpGs were significantly associated with all-cause mortality (Bonferroni corrected p-value < 1.6×10-3). Hypermethylation of cg18181703 (SOCS3) was associated with higher scores of both MDS and AHEI and lower risk for all-cause mortality (p-value = 5.7×10-15). Ten additional diet-associated CpGs were nominally associated with all-cause mortality (p-value < 0.05). MR analysis revealed eight putatively causal associations for six CpGs with four CVD risk factors (BMI, triglycerides, high-density lipoprotein cholesterol concentrations, and type 2 diabetes; Bonferroni corrected MR p-value < 4.5×10-4). For example, hypermethylation of cg11250194 (FADS2) was associated with lower triglyceride concentrations (MR p-value = 1.5×10-14) and hypermethylation of cg02079413 (SNORA54; NAP1L4) was associated with BMI (corrected MR p-value = 1×10-6). Conclusions - Habitual diet quality was associated with differential peripheral leukocyte DNA methylation levels of 30 CpGs, most of which were also associated with multiple health outcomes, in EA individuals. These findings demonstrate that integrative genomic analysis of dietary information may reveal molecular targets for disease prevention and treatment.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Rebholz, Casey M
|b 1
700 1 _ |a Braun, Kim V E
|b 2
700 1 _ |a Reynolds, Lindsay M
|b 3
700 1 _ |a Aslibekyan, Stella
|b 4
700 1 _ |a Xia, Rui
|b 5
700 1 _ |a Biligowda, Niranjan G
|b 6
700 1 _ |a Huan, Tianxiao
|b 7
700 1 _ |a Liu, Chunyu
|b 8
700 1 _ |a Mendelson, Michael M
|b 9
700 1 _ |a Joehanes, Roby
|b 10
700 1 _ |a Hu, Emily A
|b 11
700 1 _ |a Vitolins, Mara Z
|b 12
700 1 _ |a Wood, Alexis C
|b 13
700 1 _ |a Lohman, Kurt
|b 14
700 1 _ |a Ochoa-Rosales, Carolina
|b 15
700 1 _ |a van Meurs, Joyce
|b 16
700 1 _ |a Uitterlinden, André
|b 17
700 1 _ |a Liu, Yongmei
|b 18
700 1 _ |a Elhadad, Mohamed A
|b 19
700 1 _ |a Heier, Margit
|b 20
700 1 _ |a Waldenberger, Melanie
|b 21
700 1 _ |a Peters, Annette
|b 22
700 1 _ |a Colicino, Elena
|b 23
700 1 _ |a Whitsel, Eric A
|b 24
700 1 _ |a Baldassari, Antoine
|b 25
700 1 _ |a Gharib, Sina A
|b 26
700 1 _ |a Sotoodehnia, Nona
|b 27
700 1 _ |a Brody, Jennifer A
|b 28
700 1 _ |a Sitlani, Colleen M
|b 29
700 1 _ |a Tanaka, Toshiko
|b 30
700 1 _ |a Hill, W David
|b 31
700 1 _ |a Corley, Janie
|b 32
700 1 _ |a Deary, Ian J
|b 33
700 1 _ |a Zhang, Yan
|0 P:(DE-He78)6a8f87626cb610618a60d742677284cd
|b 34
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 35
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 36
|u dkfz
700 1 _ |a Walker, Maura E
|b 37
700 1 _ |a Ye, Shumao
|b 38
700 1 _ |a Nguyen, Steve
|b 39
700 1 _ |a Pankow, Jim
|b 40
700 1 _ |a Demerath, Ellen W
|b 41
700 1 _ |a Zheng, Yinan
|b 42
700 1 _ |a Hou, Lifang
|b 43
700 1 _ |a Liang, Liming
|b 44
700 1 _ |a Lichtenstein, Alice H
|b 45
700 1 _ |a Hu, Frank B
|b 46
700 1 _ |a Fornage, Myriam
|b 47
700 1 _ |a Voortman, Trudy
|b 48
700 1 _ |a Levy, Daniel
|b 49
773 _ _ |a 10.1161/CIRCGEN.119.002766
|g p. CIRCGEN.119.002766
|0 PERI:(DE-600)2927603-2
|n 4
|p e002766
|t Circulation Genomic and precision medicine
|v 13
|y 2020
|x 2574-8300
909 C O |p VDB
|o oai:inrepo02.dkfz.de:156897
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 34
|6 P:(DE-He78)6a8f87626cb610618a60d742677284cd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 35
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 36
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Metabolic Dysfunction as Risk Factor
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CIRC-GENOM PRECIS ME : 2018
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-02-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-28
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21