001     156909
005     20240229123121.0
024 7 _ |a 10.1016/j.foodres.2020.109221
|2 doi
024 7 _ |a pmid:32517933
|2 pmid
024 7 _ |a 0963-9969
|2 ISSN
024 7 _ |a 1873-7145
|2 ISSN
024 7 _ |a altmetric:80373937
|2 altmetric
037 _ _ |a DKFZ-2020-01216
041 _ _ |a eng
082 _ _ |a 660
100 1 _ |a Silva, Francisco L F
|b 0
245 _ _ |a The concentration of polyphenolic compounds and trace elements in the Coffea arabica leaves: Potential chemometric pattern recognition of coffee leaf rust resistance.
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594202490_8727
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Coffee (Coffea arabica L.) is an important commodity, involving about 500 million people from the cultivation of the coffee trees to final consumption of infusions of the ground roasted coffee beans. In contrast to a considerable amount of research performed on green coffee beans, there are relatively few studies regarding the chemical constituents of coffee leaves. Hemileia vastatrix is a parasite, specific to coffee plants and causes coffee leaf rust, which is a very destructive disease. Some coffee plants have natural resistance which is mainly linked to a gene and specific host resistance response. An increase in flavonoid production may be related to fungal disease resistance, with the levels and flavonoid types being an early physiological response to rust infection. Trace inorganic elements can be related to many roles in the defense response of higher plants and can be used as a biomarker for some diseases. To address this, coffee leaves from 16 different cultivars of Coffea arabica were harvested from Minas Gerais, Brazil (susceptible and resistant to rust) and their polyphenolic compounds were extracted using the QuEChERS technique and quantitated by HPLC-ESI-MS. The same leaves were decomposed using an acid mixture in a block digester and the content of Al, Cu, Mg, Mn, Ni, Sn and Zn was quantitated by ICP-OES. Principal component analysis (PCA) was applied and we could establish a relation between polyphenolic and trace element concentration in the leaves with resistance to rust infection. On this basis in this preliminary study we were able to separate the resistant from the susceptible cultivars. The main compounds responsible for this differentiation were the content of chlorogenic acid and magnesium in the leaves. The content of polyphenolic compounds was lower in susceptible cultivars and a diametric effect was observed between Mn and Mg concentrations. This study shows potential for the discrimination of resistant and susceptible coffee trees based on the analyses of both trace element and polyphenolic concentration.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Nascimento, Gerlan O
|b 1
700 1 _ |a Lopes, Gisele S
|b 2
700 1 _ |a Matos, Wladiana O
|b 3
700 1 _ |a Cunha, Rodrigo L
|b 4
700 1 _ |a Malta, Marcelo R
|b 5
700 1 _ |a Liska, Gilberto Rodrigues
|b 6
700 1 _ |a Owen, Robert
|0 P:(DE-He78)43996fb100428b0d99e233c3261f7187
|b 7
700 1 _ |a Trevisan, M Teresa S
|b 8
773 _ _ |a 10.1016/j.foodres.2020.109221
|g Vol. 134, p. 109221 -
|0 PERI:(DE-600)1483651-8
|p 109221 -
|t Food research international
|v 134
|y 2020
|x 0963-9969
909 C O |o oai:inrepo02.dkfz.de:156909
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)43996fb100428b0d99e233c3261f7187
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FOOD RES INT : 2018
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-02
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21