000156917 001__ 156917 000156917 005__ 20240229123122.0 000156917 0247_ $$2doi$$a10.1177/0962280220938402 000156917 0247_ $$2pmid$$apmid:32631137 000156917 0247_ $$2ISSN$$a0962-2802 000156917 0247_ $$2ISSN$$a1477-0334 000156917 0247_ $$2altmetric$$aaltmetric:85351288 000156917 037__ $$aDKFZ-2020-01224 000156917 041__ $$aeng 000156917 082__ $$a610 000156917 1001_ $$0P:(DE-He78)92820b4867c955a04f642707ecf35b40$$aEdelmann, Dominic$$b0$$eFirst author$$udkfz 000156917 245__ $$aA global test for competing risks survival analysis. 000156917 260__ $$aLondon [u.a.]$$bSage$$c2020 000156917 3367_ $$2DRIVER$$aarticle 000156917 3367_ $$2DataCite$$aOutput Types/Journal article 000156917 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602761817_10882 000156917 3367_ $$2BibTeX$$aARTICLE 000156917 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000156917 3367_ $$00$$2EndNote$$aJournal Article 000156917 500__ $$a2020 Dec;29(12):3666-3683#EA:C060# 000156917 520__ $$aStandard tests for the Cox model, such as the likelihood ratio test or the Wald test, do not perform well in situations, where the number of covariates is substantially higher than the number of observed events. This issue is perpetuated in competing risks settings, where the number of observed occurrences for each event type is usually rather small. Yet, appropriate testing methodology for competing risks survival analysis with few events per variable is missing. In this article, we show how to extend the global test for survival by Goeman et al. to competing risks and multistate models[Per journal style, abstracts should not have reference citations. Therefore, can you kindly delete this reference citation.]. Conducting detailed simulation studies, we show that both for type I error control and for power, the novel test outperforms the likelihood ratio test and the Wald test based on the cause-specific hazards model in settings where the number of events is small compared to the number of covariates. The benefit of the global tests for competing risks survival analysis and multistate models is further demonstrated in real data examples of cancer patients from the European Society for Blood and Marrow Transplantation. 000156917 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0 000156917 588__ $$aDataset connected to CrossRef, PubMed, 000156917 7001_ $$0P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74$$aSaadati, Maral$$b1 000156917 7001_ $$00000-0001-5395-1422$$aPutter, Hein$$b2 000156917 7001_ $$aGoeman, Jelle$$b3 000156917 773__ $$0PERI:(DE-600)2001539-2$$a10.1177/0962280220938402$$gp. 096228022093840 -$$n12$$p3666-3683$$tStatistical methods in medical research$$v29$$x1477-0334$$y2020 000156917 909CO $$ooai:inrepo02.dkfz.de:156917$$pVDB 000156917 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92820b4867c955a04f642707ecf35b40$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000156917 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000156917 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0 000156917 9141_ $$y2020 000156917 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2019-12-20$$wger 000156917 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2019-12-20$$wger 000156917 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSTAT METHODS MED RES : 2018$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-20 000156917 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2019-12-20 000156917 9200_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0 000156917 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0 000156917 980__ $$ajournal 000156917 980__ $$aVDB 000156917 980__ $$aI:(DE-He78)C060-20160331 000156917 980__ $$aUNRESTRICTED