000156919 001__ 156919
000156919 005__ 20240229123122.0
000156919 0247_ $$2doi$$a10.1002/1878-0261.12738
000156919 0247_ $$2pmid$$apmid:32506842
000156919 0247_ $$2ISSN$$a1574-7891
000156919 0247_ $$2ISSN$$a1878-0261
000156919 0247_ $$2altmetric$$aaltmetric:108874019
000156919 037__ $$aDKFZ-2020-01226
000156919 041__ $$aeng
000156919 082__ $$a610
000156919 1001_ $$0P:(DE-He78)d19149dd97b17ce55e70abd2f9e64d3d$$aZhang, Yan$$b0$$eFirst author
000156919 245__ $$aBlood-derived DNA methylation predictors of mortality discriminate tumor and healthy tissue in multiple organs.
000156919 260__ $$aHoboken, NJ$$bJohn Wiley & Sons, Inc.$$c2020
000156919 3367_ $$2DRIVER$$aarticle
000156919 3367_ $$2DataCite$$aOutput Types/Journal article
000156919 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603097753_18443
000156919 3367_ $$2BibTeX$$aARTICLE
000156919 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000156919 3367_ $$00$$2EndNote$$aJournal Article
000156919 500__ $$a2020 Sep;14(9):2111-2123#EA:C070#LA:C070#
000156919 520__ $$aEvidence has shown that certain methylation markers derived from blood can mirror corresponding methylation signatures in internal tissues. In the current study, we aimed to investigate two strong epigenetic predictors for life span, derived from blood DNA methylation data, in tissue samples of solid cancer patients. Using data from the Cancer Genome Atlas (TCGA) and the German DACHS study, we compared a mortality risk score (MRscore) and DNAmPhenoAge in paired tumor and adjacent normal tissue samples of patients with lung (N = 69), colorectal (n = 299), breast (n = 90), head/neck (n = 50), prostate (n = 50), and liver (n = 50) cancer. To explore the concordance across tissue and blood, we additionally assessed the two markers in blood samples of colorectal cancer (CRC) cases and matched controls (n = 93) in the DACHS+ study. The MRscore was significantly elevated in tumor tissues compared to normal tissues of all cancers except prostate cancer, for which an opposite pattern was observed. DNAmPhenoAge was consistently higher in all tumor tissues. The MRscore discriminated lung, colorectal, and prostate tumor tissues from normal tissues with very high accuracy [AUCs of 0.87, 0.99 (TCGA) /0.94 (DACHS), and 0.92, respectively]. DNAmPhenoAge accurately discriminated five types of tumor tissues from normal tissues (except prostate cancer), with AUCs of 0.82-0.93. The MRscore was also significantly higher in blood samples of CRC cases than in controls, with areas under the curve (AUC) of 0.74, whereas DNAmPhenoAge did not distinguish cases from controls, with AUC of 0.54. This study provides compelling evidence that blood-derived DNAm markers could reflect methylation changes in less accessible tissues. Further research should explore the potential use of these findings for cancer diagnosis and early detection.
000156919 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000156919 588__ $$aDataset connected to CrossRef, PubMed,
000156919 7001_ $$0P:(DE-He78)7999346780553d7fab7ba69d5afdfa71$$aBewerunge-Hudler, Melanie$$b1$$udkfz
000156919 7001_ $$0P:(DE-He78)c954da35a243d177fdc4a3924f4f8a5c$$aSchick, Matthias$$b2$$udkfz
000156919 7001_ $$0P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf$$aBurwinkel, Barbara$$b3$$udkfz
000156919 7001_ $$aHerpel, Esther$$b4
000156919 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b5$$udkfz
000156919 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b6$$eLast author$$udkfz
000156919 773__ $$0PERI:(DE-600)2322586-5$$a10.1002/1878-0261.12738$$gp. 1878-0261.12738$$n9$$p2111-2123$$tMolecular oncology$$v14$$x1878-0261$$y2020
000156919 909CO $$ooai:inrepo02.dkfz.de:156919$$pVDB
000156919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7999346780553d7fab7ba69d5afdfa71$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000156919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c954da35a243d177fdc4a3924f4f8a5c$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000156919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000156919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000156919 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000156919 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000156919 9141_ $$y2020
000156919 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL ONCOL : 2018$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-06
000156919 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL ONCOL : 2018$$d2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-06
000156919 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-06
000156919 9202_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x0
000156919 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000156919 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000156919 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000156919 9201_ $$0I:(DE-He78)W110-20160331$$kW110$$lW110 Microarray Unit$$x2
000156919 9201_ $$0I:(DE-He78)C080-20160331$$kC080$$lC080 Molekulare Epidemiologie$$x3
000156919 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x4
000156919 980__ $$ajournal
000156919 980__ $$aVDB
000156919 980__ $$aI:(DE-He78)C070-20160331
000156919 980__ $$aI:(DE-He78)HD01-20160331
000156919 980__ $$aI:(DE-He78)W110-20160331
000156919 980__ $$aI:(DE-He78)C080-20160331
000156919 980__ $$aI:(DE-He78)C120-20160331
000156919 980__ $$aUNRESTRICTED