Home > Publications database > Blood-derived DNA methylation predictors of mortality discriminate tumor and healthy tissue in multiple organs. > print |
001 | 156919 | ||
005 | 20240229123122.0 | ||
024 | 7 | _ | |a 10.1002/1878-0261.12738 |2 doi |
024 | 7 | _ | |a pmid:32506842 |2 pmid |
024 | 7 | _ | |a 1574-7891 |2 ISSN |
024 | 7 | _ | |a 1878-0261 |2 ISSN |
024 | 7 | _ | |a altmetric:108874019 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-01226 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Zhang, Yan |0 P:(DE-He78)d19149dd97b17ce55e70abd2f9e64d3d |b 0 |e First author |
245 | _ | _ | |a Blood-derived DNA methylation predictors of mortality discriminate tumor and healthy tissue in multiple organs. |
260 | _ | _ | |a Hoboken, NJ |c 2020 |b John Wiley & Sons, Inc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1603097753_18443 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2020 Sep;14(9):2111-2123#EA:C070#LA:C070# |
520 | _ | _ | |a Evidence has shown that certain methylation markers derived from blood can mirror corresponding methylation signatures in internal tissues. In the current study, we aimed to investigate two strong epigenetic predictors for life span, derived from blood DNA methylation data, in tissue samples of solid cancer patients. Using data from the Cancer Genome Atlas (TCGA) and the German DACHS study, we compared a mortality risk score (MRscore) and DNAmPhenoAge in paired tumor and adjacent normal tissue samples of patients with lung (N = 69), colorectal (n = 299), breast (n = 90), head/neck (n = 50), prostate (n = 50), and liver (n = 50) cancer. To explore the concordance across tissue and blood, we additionally assessed the two markers in blood samples of colorectal cancer (CRC) cases and matched controls (n = 93) in the DACHS+ study. The MRscore was significantly elevated in tumor tissues compared to normal tissues of all cancers except prostate cancer, for which an opposite pattern was observed. DNAmPhenoAge was consistently higher in all tumor tissues. The MRscore discriminated lung, colorectal, and prostate tumor tissues from normal tissues with very high accuracy [AUCs of 0.87, 0.99 (TCGA) /0.94 (DACHS), and 0.92, respectively]. DNAmPhenoAge accurately discriminated five types of tumor tissues from normal tissues (except prostate cancer), with AUCs of 0.82-0.93. The MRscore was also significantly higher in blood samples of CRC cases than in controls, with areas under the curve (AUC) of 0.74, whereas DNAmPhenoAge did not distinguish cases from controls, with AUC of 0.54. This study provides compelling evidence that blood-derived DNAm markers could reflect methylation changes in less accessible tissues. Further research should explore the potential use of these findings for cancer diagnosis and early detection. |
536 | _ | _ | |a 313 - Cancer risk factors and prevention (POF3-313) |0 G:(DE-HGF)POF3-313 |c POF3-313 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Bewerunge-Hudler, Melanie |0 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71 |b 1 |u dkfz |
700 | 1 | _ | |a Schick, Matthias |0 P:(DE-He78)c954da35a243d177fdc4a3924f4f8a5c |b 2 |u dkfz |
700 | 1 | _ | |a Burwinkel, Barbara |0 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf |b 3 |u dkfz |
700 | 1 | _ | |a Herpel, Esther |b 4 |
700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 5 |u dkfz |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 6 |e Last author |u dkfz |
773 | _ | _ | |a 10.1002/1878-0261.12738 |g p. 1878-0261.12738 |0 PERI:(DE-600)2322586-5 |n 9 |p 2111-2123 |t Molecular oncology |v 14 |y 2020 |x 1878-0261 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:156919 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)7999346780553d7fab7ba69d5afdfa71 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)c954da35a243d177fdc4a3924f4f8a5c |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |2 G:(DE-HGF)POF3-300 |v Cancer risk factors and prevention |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MOL ONCOL : 2018 |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-01-06 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2020-01-06 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-06 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-06 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MOL ONCOL : 2018 |d 2020-01-06 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-06 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-06 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-01-06 |
920 | 2 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 0 |
920 | 0 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 1 |
920 | 1 | _ | |0 I:(DE-He78)W110-20160331 |k W110 |l W110 Microarray Unit |x 2 |
920 | 1 | _ | |0 I:(DE-He78)C080-20160331 |k C080 |l C080 Molekulare Epidemiologie |x 3 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)W110-20160331 |
980 | _ | _ | |a I:(DE-He78)C080-20160331 |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|