001     157016
005     20240229123126.0
024 7 _ |a 10.1016/j.omtm.2020.04.017
|2 doi
024 7 _ |a pmid:32420409
|2 pmid
024 7 _ |a pmc:PMC7218229
|2 pmc
024 7 _ |a altmetric:81066474
|2 altmetric
037 _ _ |a DKFZ-2020-01313
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Bozza, Matthias
|0 P:(DE-He78)3391c5ad790ea5359189d11f073fb103
|b 0
|e First author
|u dkfz
245 _ _ |a Novel Non-integrating DNA Nano-S/MAR Vectors Restore Gene Function in Isogenic Patient-Derived Pancreatic Tumor Models.
260 _ _ |a New York, NY
|c 2020
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600168834_32125
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:F160#LA:F160#
520 _ _ |a We describe herein non-integrating minimally sized nano-S/MAR DNA vectors, which can be used to genetically modify dividing cells in place of integrating vectors. They represent a unique genetic tool, which avoids vector-mediated damage. Previous work has shown that DNA vectors comprising a mammalian S/MAR element can provide persistent mitotic stability over hundreds of cell divisions, resisting epigenetic silencing and thereby allowing sustained transgene expression. The composition of the original S/MAR vectors does present some inherent limitations that can provoke cellular toxicity. Herein, we present a new system, the nano-S/MAR, which drives higher transgene expression and has improved efficiency of establishment, due to the minimal impact on cellular processes and perturbation of the endogenous transcriptome. We show that these features enable the hitherto challenging genetic modification of patient-derived cells to stably restore the tumor suppressor gene SMAD4 to a patient-derived SMAD4 knockout pancreatic cancer line. Nano-S/MAR modification does not alter the molecular or phenotypic integrity of the patient-derived cells in cell culture and xenograft mouse models. In conclusion, we show that these DNA vectors can be used to persistently modify a range of cells, providing sustained transgene expression while avoiding the risks of insertional mutagenesis and other vector-mediated toxicity.
536 _ _ |a 316 - Infections and cancer (POF3-316)
|0 G:(DE-HGF)POF3-316
|c POF3-316
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Green, Edward W
|0 P:(DE-He78)9b97ca569bcb00dfda69382bc7261700
|b 1
|u dkfz
700 1 _ |a Espinet, Elisa
|0 P:(DE-HGF)0
|b 2
700 1 _ |a De Roia, Alice
|0 P:(DE-He78)3735edce41649376fec34cf8b3a1843d
|b 3
|u dkfz
700 1 _ |a Klein, Corinna
|0 P:(DE-He78)0812f68beb25392984d3abbe3c58b6d2
|b 4
|u dkfz
700 1 _ |a Vogel, Vanessa
|0 P:(DE-He78)03fd0ab6ad061c771968971670c391e2
|b 5
|u dkfz
700 1 _ |a Offringa, Rienk
|0 P:(DE-He78)81ae96953d6149e4307057d71a190019
|b 6
|u dkfz
700 1 _ |a Williams, James A
|b 7
700 1 _ |a Sprick, Martin
|0 P:(DE-He78)0f44fcb0b05507b0a20b175f7ba9ed1c
|b 8
|u dkfz
700 1 _ |a Harbottle, Richard
|0 P:(DE-He78)15dff5647002b4dcfe892b251cd14b62
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.omtm.2020.04.017
|g Vol. 17, p. 957 - 968
|0 PERI:(DE-600)2863173-0
|p 957 - 968
|t Molecular therapy Methods & clinical development
|v 17
|y 2020
|x 2329-0501
909 C O |p VDB
|o oai:inrepo02.dkfz.de:157016
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)3391c5ad790ea5359189d11f073fb103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)9b97ca569bcb00dfda69382bc7261700
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)3735edce41649376fec34cf8b3a1843d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)0812f68beb25392984d3abbe3c58b6d2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)03fd0ab6ad061c771968971670c391e2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)81ae96953d6149e4307057d71a190019
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)0f44fcb0b05507b0a20b175f7ba9ed1c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)15dff5647002b4dcfe892b251cd14b62
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-316
|2 G:(DE-HGF)POF3-300
|v Infections and cancer
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL THER-METH CLIN D : 2018
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-02-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-02-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-02-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-02-28
920 2 _ |0 I:(DE-He78)F160-20160331
|k F160
|l F160 DNA-Vektoren
|x 0
920 0 _ |0 I:(DE-He78)F160-20160331
|k F160
|l F160 DNA-Vektoren
|x 0
920 1 _ |0 I:(DE-He78)F160-20160331
|k F160
|l F160 DNA-Vektoren
|x 0
920 1 _ |0 I:(DE-He78)D170-20160331
|k D170
|l Neuroimmunologie und Hirntumorimmunologie
|x 1
920 1 _ |0 I:(DE-He78)A010-20160331
|k A010
|l Stammzellen und Krebs
|x 2
920 1 _ |0 I:(DE-He78)V960-20160331
|k V960
|l V960 HI-Stem
|x 3
920 1 _ |0 I:(DE-He78)D200-20160331
|k D200
|l Molekulare Grundlagen Gastrointestinaler Tumoren
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F160-20160331
980 _ _ |a I:(DE-He78)D170-20160331
980 _ _ |a I:(DE-He78)A010-20160331
980 _ _ |a I:(DE-He78)V960-20160331
980 _ _ |a I:(DE-He78)D200-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21