001     157056
005     20240229123127.0
024 7 _ |a 10.1186/s13014-020-01613-4
|2 doi
024 7 _ |a pmid:32653003
|2 pmid
037 _ _ |a DKFZ-2020-01347
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Bostel, Tilmann
|0 P:(DE-He78)a9a6232a4fccf84da58752c9cc24be23
|b 0
|e First author
|u dkfz
245 _ _ |a Exploring MR regression patterns in rectal cancer during neoadjuvant radiochemotherapy with daily T2- and diffusion-weighted MRI.
260 _ _ |a London
|c 2020
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1612509211_8338
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E050#LA:E050#
520 _ _ |a To date, only limited magnetic resonance imaging (MRI) data are available concerning tumor regression during neoadjuvant radiochemotherapy (RCT) of rectal cancer patients, which is a prerequisite for adaptive radiotherapy (RT) concepts. This exploratory study prospectively evaluated daily fractional MRI during neoadjuvant treatment to analyze the predictive value of MR biomarkers for treatment response.Locally advanced rectal cancer patients were examined with daily MRI during neoadjuvant RCT. Contouring of the tumor volume was performed for each MRI scan by using T2- and diffusion-weighted-imaging (DWI)-sequences. The daily apparent-diffusion coefficient (ADC) was calculated. Volumetric and functional tumor changes during RCT were analyzed and correlated with the pathological response after surgical resection.In total, 171 MRI scans of eight patients were analyzed regarding anatomical and functional dynamics during RCT. Pathological complete response (pCR) could be achieved in four patients, and four patients had a pathological partial response (pPR) following neoadjuvant treatment. T2- and DWI-based volumetry proved to be statistically significant in terms of therapeutic response, and volumetric thresholds at week two and week four during RCT were defined for the prediction of pCR. In contrast, the average tumor ADC values widely overlapped between both response groups during RCT and appeared inadequate to predict treatment response in our patient cohort.This prospective exploratory study supports the hypothesis that MRI may be able to predict pCR of rectal cancers early during neoadjuvant RCT. Our data therefore provide a useful template to tailor future MR-guided adaptive treatment concepts.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Dreher, C.
|0 P:(DE-He78)b9af25eb669871c3bd619dff8c5c34c0
|b 1
|u dkfz
700 1 _ |a Wollschläger, D.
|b 2
700 1 _ |a Mayer, A.
|b 3
700 1 _ |a König, F.
|0 P:(DE-He78)b03f7e5246e8a54dc8b9664fa11324e2
|b 4
|u dkfz
700 1 _ |a Bickelhaupt, S.
|0 P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9
|b 5
|u dkfz
700 1 _ |a Schlemmer, H. P.
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 6
|u dkfz
700 1 _ |a Huber, P. E.
|0 P:(DE-He78)3291aaac20f3d603d96744c1f0890028
|b 7
|u dkfz
700 1 _ |a Sterzing, Florian
|0 P:(DE-He78)75d45845a04db67c5a88db1086046ef1
|b 8
700 1 _ |a Bäumer, Philipp
|0 P:(DE-He78)4a14b13a372ab8bf853e4b650a6bd98a
|b 9
700 1 _ |a Debus, J.
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 10
|u dkfz
700 1 _ |a Nicolay, N. H.
|0 P:(DE-HGF)0
|b 11
|e Last author
773 _ _ |a 10.1186/s13014-020-01613-4
|g Vol. 15, no. 1, p. 171
|0 PERI:(DE-600)2224965-5
|n 1
|p 171
|t Radiation oncology
|v 15
|y 2020
|x 1748-717X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:157056
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a9a6232a4fccf84da58752c9cc24be23
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)b9af25eb669871c3bd619dff8c5c34c0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)b03f7e5246e8a54dc8b9664fa11324e2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)3291aaac20f3d603d96744c1f0890028
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)75d45845a04db67c5a88db1086046ef1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)4a14b13a372ab8bf853e4b650a6bd98a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-12
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-12
920 2 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 0
920 0 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E055-20160331
|k E055
|l E055 KKE Translationale Radioonkologie
|x 1
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 2
920 1 _ |0 I:(DE-He78)E250-20160331
|k E250
|l Muliparametrische Methoden zur Früherkennung des Prostatakarzinoms
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a I:(DE-He78)E055-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E250-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21