001     157064
005     20240229123127.0
024 7 _ |a 10.1158/1055-9965.EPI-19-1504
|2 doi
024 7 _ |a pmid:32066614
|2 pmid
024 7 _ |a pmc:PMC7196521
|2 pmc
024 7 _ |a 1055-9965
|2 ISSN
024 7 _ |a 1538-7755
|2 ISSN
024 7 _ |a altmetric:76343756
|2 altmetric
037 _ _ |a DKFZ-2020-01355
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Zhong, Charlie
|0 0000-0001-6973-887X
|b 0
245 _ _ |a Assessing Cancer Treatment Information Using Medicare and Hospital Discharge Data among Women with Non-Hodgkin Lymphoma in a Los Angeles County Case-Control Study.
260 _ _ |a Philadelphia, Pa.
|c 2020
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594718233_24603
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We assessed the ability to supplement existing epidemiologic/etiologic studies with data on treatment and clinical outcomes by linking to publicly available cancer registry and administrative databases.Medical records were retrieved and abstracted for cases enrolled in a Los Angeles County case-control study of non-Hodgkin lymphoma (NHL). Cases were linked to the Los Angeles County cancer registry (CSP), the California state hospitalization discharge database (OSHPD), and the SEER-Medicare database. We assessed sensitivity, specificity, and positive predictive value (PPV) of cancer treatment in linked databases, compared with medical record abstraction.We successfully retrieved medical records for 918 of 1,004 participating NHL cases and abstracted treatment for 698. We linked 59% of cases (96% of cases >65 years old) to SEER-Medicare and 96% to OSHPD. Chemotherapy was the most common treatment and best captured, with the highest sensitivity in SEER-Medicare (80%) and CSP (74%); combining all three data sources together increased sensitivity (92%), at reduced specificity (56%). Sensitivity for radiotherapy was moderate: 77% with aggregated data. Sensitivity of BMT was low in the CSP (42%), but high for the administrative databases, especially OSHPD (98%). Sensitivity for surgery reached 83% when considering all three datasets in aggregate, but PPV was 60%. In general, sensitivity and PPV for chronic lymphocytic leukemia/small lymphocytic lymphoma were low.Chemotherapy was accurately captured by all data sources. Hospitalization data yielded the highest performance values for BMTs. Performance measures for radiotherapy and surgery were moderate.Various administrative databases can supplement epidemiologic studies, depending on treatment type and NHL subtype of interest.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Seibold, Petra
|0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
|b 1
|u dkfz
700 1 _ |a Chao, Chun R
|b 2
700 1 _ |a Cozen, Wendy
|0 0000-0003-3415-8247
|b 3
700 1 _ |a Song, Joo Y
|b 4
700 1 _ |a Weisenburger, Dennis
|b 5
700 1 _ |a Bernstein, Leslie
|0 0000-0002-7692-6518
|b 6
700 1 _ |a Wang, Sophia S
|b 7
773 _ _ |a 10.1158/1055-9965.EPI-19-1504
|g Vol. 29, no. 5, p. 936 - 941
|0 PERI:(DE-600)2036781-8
|n 5
|p 936 - 941
|t Cancer epidemiology, biomarkers & prevention
|v 29
|y 2020
|x 1538-7755
909 C O |o oai:inrepo02.dkfz.de:157064
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER EPIDEM BIOMAR : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCER EPIDEM BIOMAR : 2018
|d 2020-01-17
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21