000157070 001__ 157070
000157070 005__ 20240229123128.0
000157070 0247_ $$2doi$$a10.1038/s41431-020-0664-2
000157070 0247_ $$2pmid$$apmid:32514134
000157070 0247_ $$2ISSN$$a1018-4813
000157070 0247_ $$2ISSN$$a1476-5438
000157070 0247_ $$2altmetric$$aaltmetric:83715522
000157070 037__ $$aDKFZ-2020-01361
000157070 041__ $$aeng
000157070 082__ $$a610
000157070 1001_ $$00000-0001-8723-8123$$aKarunamuni, Roshan A$$b0
000157070 245__ $$aThe effect of sample size on polygenic hazard models for prostate cancer.
000157070 260__ $$aBasingstoke$$bStockton Press$$c2020
000157070 3367_ $$2DRIVER$$aarticle
000157070 3367_ $$2DataCite$$aOutput Types/Journal article
000157070 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602674113_12320
000157070 3367_ $$2BibTeX$$aARTICLE
000157070 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000157070 3367_ $$00$$2EndNote$$aJournal Article
000157070 500__ $$a2020 Oct;28(10):1467-1475
000157070 520__ $$aWe determined the effect of sample size on performance of polygenic hazard score (PHS) models in prostate cancer. Age and genotypes were obtained for 40,861 men from the PRACTICAL consortium. The dataset included 201,590 SNPs per subject, and was split into training and testing sets. Established-SNP models considered 65 SNPs that had been previously associated with prostate cancer. Discovery-SNP models used stepwise selection to identify new SNPs. The performance of each PHS model was calculated for random sizes of the training set. The performance of a representative Established-SNP model was estimated for random sizes of the testing set. Mean HR98/50 (hazard ratio of top 2% to average in test set) of the Established-SNP model increased from 1.73 [95% CI: 1.69-1.77] to 2.41 [2.40-2.43] when the number of training samples was increased from 1 thousand to 30 thousand. Corresponding HR98/50 of the Discovery-SNP model increased from 1.05 [0.93-1.18] to 2.19 [2.16-2.23]. HR98/50 of a representative Established-SNP model using testing set sample sizes of 0.6 thousand and 6 thousand observations were 1.78 [1.70-1.85] and 1.73 [1.71-1.76], respectively. We estimate that a study population of 20 thousand men is required to develop Discovery-SNP PHS models while 10 thousand men should be sufficient for Established-SNP models.
000157070 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000157070 588__ $$aDataset connected to CrossRef, PubMed,
000157070 7001_ $$00000-0002-5025-4709$$aHuynh-Le, Minh-Phuong$$b1
000157070 7001_ $$aFan, Chun C$$b2
000157070 7001_ $$aEeles, Rosalind A$$b3
000157070 7001_ $$00000-0003-2444-3247$$aEaston, Douglas F$$b4
000157070 7001_ $$aKote-Jarai, ZSofia$$b5
000157070 7001_ $$aAmin Al Olama, Ali$$b6
000157070 7001_ $$aBenlloch Garcia, Sara$$b7
000157070 7001_ $$aMuir, Kenneth$$b8
000157070 7001_ $$aGronberg, Henrik$$b9
000157070 7001_ $$00000-0002-4623-0544$$aWiklund, Fredrik$$b10
000157070 7001_ $$aAly, Markus$$b11
000157070 7001_ $$00000-0002-1863-0305$$aSchleutker, Johanna$$b12
000157070 7001_ $$00000-0002-8853-4722$$aSipeky, Csilla$$b13
000157070 7001_ $$aTammela, Teuvo L J$$b14
000157070 7001_ $$00000-0002-1954-7220$$aNordestgaard, Børge G$$b15
000157070 7001_ $$aKey, Tim J$$b16
000157070 7001_ $$aTravis, Ruth C$$b17
000157070 7001_ $$aNeal, David E$$b18
000157070 7001_ $$aDonovan, Jenny L$$b19
000157070 7001_ $$aHamdy, Freddie C$$b20
000157070 7001_ $$00000-0001-8494-732X$$aPharoah, Paul$$b21
000157070 7001_ $$aPashayan, Nora$$b22
000157070 7001_ $$aKhaw, Kay-Tee$$b23
000157070 7001_ $$aThibodeau, Stephen N$$b24
000157070 7001_ $$aMcDonnell, Shannon K$$b25
000157070 7001_ $$aSchaid, Daniel J$$b26
000157070 7001_ $$aMaier, Christiane$$b27
000157070 7001_ $$aVogel, Walther$$b28
000157070 7001_ $$aLuedeke, Manuel$$b29
000157070 7001_ $$00000-0002-0339-3394$$aHerkommer, Kathleen$$b30
000157070 7001_ $$aKibel, Adam S$$b31
000157070 7001_ $$aCybulski, Cezary$$b32
000157070 7001_ $$aWokolorczyk, Dominika$$b33
000157070 7001_ $$aKluzniak, Wojciech$$b34
000157070 7001_ $$00000-0003-2602-3668$$aCannon-Albright, Lisa$$b35
000157070 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b36$$udkfz
000157070 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b37$$udkfz
000157070 7001_ $$0P:(DE-He78)53e1a2846c69064e27790dbf349ccaec$$aHolleczek, Bernd$$b38$$udkfz
000157070 7001_ $$aPark, Jong Y$$b39
000157070 7001_ $$aSellers, Thomas A$$b40
000157070 7001_ $$aLin, Hui-Yi$$b41
000157070 7001_ $$aSlavov, Chavdar$$b42
000157070 7001_ $$aKaneva, Radka$$b43
000157070 7001_ $$aMitev, Vanio$$b44
000157070 7001_ $$aBatra, Jyotsna$$b45
000157070 7001_ $$aClements, Judith A$$b46
000157070 7001_ $$aSpurdle, Amanda$$b47
000157070 7001_ $$aBioResource, Australian Prostate Cancer$$b48$$eCollaboration Author
000157070 7001_ $$aTeixeira, Manuel R$$b49
000157070 7001_ $$aPaulo, Paula$$b50
000157070 7001_ $$aMaia, Sofia$$b51
000157070 7001_ $$aPandha, Hardev$$b52
000157070 7001_ $$00000-0002-7262-6227$$aMichael, Agnieszka$$b53
000157070 7001_ $$aMills, Ian G$$b54
000157070 7001_ $$aAndreassen, Ole A$$b55
000157070 7001_ $$aDale, Anders M$$b56
000157070 7001_ $$00000-0002-4089-7399$$aSeibert, Tyler M$$b57
000157070 7001_ $$aConsortium, PRACTICAL$$b58$$eCollaboration Author
000157070 773__ $$0PERI:(DE-600)2005160-8$$a10.1038/s41431-020-0664-2$$n10$$p1467-1475$$tEuropean journal of human genetics$$v28$$x1476-5438$$y2020
000157070 909CO $$ooai:inrepo02.dkfz.de:157070$$pVDB
000157070 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b36$$kDKFZ
000157070 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b37$$kDKFZ
000157070 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)53e1a2846c69064e27790dbf349ccaec$$aDeutsches Krebsforschungszentrum$$b38$$kDKFZ
000157070 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000157070 9141_ $$y2020
000157070 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J HUM GENET : 2018$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000157070 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000157070 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000157070 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000157070 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000157070 980__ $$ajournal
000157070 980__ $$aVDB
000157070 980__ $$aI:(DE-He78)C070-20160331
000157070 980__ $$aI:(DE-He78)C120-20160331
000157070 980__ $$aI:(DE-He78)HD01-20160331
000157070 980__ $$aUNRESTRICTED