001     157070
005     20240229123128.0
024 7 _ |a 10.1038/s41431-020-0664-2
|2 doi
024 7 _ |a pmid:32514134
|2 pmid
024 7 _ |a 1018-4813
|2 ISSN
024 7 _ |a 1476-5438
|2 ISSN
024 7 _ |a altmetric:83715522
|2 altmetric
037 _ _ |a DKFZ-2020-01361
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Karunamuni, Roshan A
|0 0000-0001-8723-8123
|b 0
245 _ _ |a The effect of sample size on polygenic hazard models for prostate cancer.
260 _ _ |a Basingstoke
|c 2020
|b Stockton Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602674113_12320
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Oct;28(10):1467-1475
520 _ _ |a We determined the effect of sample size on performance of polygenic hazard score (PHS) models in prostate cancer. Age and genotypes were obtained for 40,861 men from the PRACTICAL consortium. The dataset included 201,590 SNPs per subject, and was split into training and testing sets. Established-SNP models considered 65 SNPs that had been previously associated with prostate cancer. Discovery-SNP models used stepwise selection to identify new SNPs. The performance of each PHS model was calculated for random sizes of the training set. The performance of a representative Established-SNP model was estimated for random sizes of the testing set. Mean HR98/50 (hazard ratio of top 2% to average in test set) of the Established-SNP model increased from 1.73 [95% CI: 1.69-1.77] to 2.41 [2.40-2.43] when the number of training samples was increased from 1 thousand to 30 thousand. Corresponding HR98/50 of the Discovery-SNP model increased from 1.05 [0.93-1.18] to 2.19 [2.16-2.23]. HR98/50 of a representative Established-SNP model using testing set sample sizes of 0.6 thousand and 6 thousand observations were 1.78 [1.70-1.85] and 1.73 [1.71-1.76], respectively. We estimate that a study population of 20 thousand men is required to develop Discovery-SNP PHS models while 10 thousand men should be sufficient for Established-SNP models.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Huynh-Le, Minh-Phuong
|0 0000-0002-5025-4709
|b 1
700 1 _ |a Fan, Chun C
|b 2
700 1 _ |a Eeles, Rosalind A
|b 3
700 1 _ |a Easton, Douglas F
|0 0000-0003-2444-3247
|b 4
700 1 _ |a Kote-Jarai, ZSofia
|b 5
700 1 _ |a Amin Al Olama, Ali
|b 6
700 1 _ |a Benlloch Garcia, Sara
|b 7
700 1 _ |a Muir, Kenneth
|b 8
700 1 _ |a Gronberg, Henrik
|b 9
700 1 _ |a Wiklund, Fredrik
|0 0000-0002-4623-0544
|b 10
700 1 _ |a Aly, Markus
|b 11
700 1 _ |a Schleutker, Johanna
|0 0000-0002-1863-0305
|b 12
700 1 _ |a Sipeky, Csilla
|0 0000-0002-8853-4722
|b 13
700 1 _ |a Tammela, Teuvo L J
|b 14
700 1 _ |a Nordestgaard, Børge G
|0 0000-0002-1954-7220
|b 15
700 1 _ |a Key, Tim J
|b 16
700 1 _ |a Travis, Ruth C
|b 17
700 1 _ |a Neal, David E
|b 18
700 1 _ |a Donovan, Jenny L
|b 19
700 1 _ |a Hamdy, Freddie C
|b 20
700 1 _ |a Pharoah, Paul
|0 0000-0001-8494-732X
|b 21
700 1 _ |a Pashayan, Nora
|b 22
700 1 _ |a Khaw, Kay-Tee
|b 23
700 1 _ |a Thibodeau, Stephen N
|b 24
700 1 _ |a McDonnell, Shannon K
|b 25
700 1 _ |a Schaid, Daniel J
|b 26
700 1 _ |a Maier, Christiane
|b 27
700 1 _ |a Vogel, Walther
|b 28
700 1 _ |a Luedeke, Manuel
|b 29
700 1 _ |a Herkommer, Kathleen
|0 0000-0002-0339-3394
|b 30
700 1 _ |a Kibel, Adam S
|b 31
700 1 _ |a Cybulski, Cezary
|b 32
700 1 _ |a Wokolorczyk, Dominika
|b 33
700 1 _ |a Kluzniak, Wojciech
|b 34
700 1 _ |a Cannon-Albright, Lisa
|0 0000-0003-2602-3668
|b 35
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 36
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 37
|u dkfz
700 1 _ |a Holleczek, Bernd
|0 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
|b 38
|u dkfz
700 1 _ |a Park, Jong Y
|b 39
700 1 _ |a Sellers, Thomas A
|b 40
700 1 _ |a Lin, Hui-Yi
|b 41
700 1 _ |a Slavov, Chavdar
|b 42
700 1 _ |a Kaneva, Radka
|b 43
700 1 _ |a Mitev, Vanio
|b 44
700 1 _ |a Batra, Jyotsna
|b 45
700 1 _ |a Clements, Judith A
|b 46
700 1 _ |a Spurdle, Amanda
|b 47
700 1 _ |a BioResource, Australian Prostate Cancer
|b 48
|e Collaboration Author
700 1 _ |a Teixeira, Manuel R
|b 49
700 1 _ |a Paulo, Paula
|b 50
700 1 _ |a Maia, Sofia
|b 51
700 1 _ |a Pandha, Hardev
|b 52
700 1 _ |a Michael, Agnieszka
|0 0000-0002-7262-6227
|b 53
700 1 _ |a Mills, Ian G
|b 54
700 1 _ |a Andreassen, Ole A
|b 55
700 1 _ |a Dale, Anders M
|b 56
700 1 _ |a Seibert, Tyler M
|0 0000-0002-4089-7399
|b 57
700 1 _ |a Consortium, PRACTICAL
|b 58
|e Collaboration Author
773 _ _ |a 10.1038/s41431-020-0664-2
|0 PERI:(DE-600)2005160-8
|n 10
|p 1467-1475
|t European journal of human genetics
|v 28
|y 2020
|x 1476-5438
909 C O |o oai:inrepo02.dkfz.de:157070
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 36
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 37
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 38
|6 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J HUM GENET : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-16
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21