001     157074
005     20240229123128.0
024 7 _ |a 10.3390/metabo10050213
|2 doi
024 7 _ |a pmid:32455751
|2 pmid
024 7 _ |a pmc:PMC7281389
|2 pmc
024 7 _ |a altmetric:82559875
|2 altmetric
037 _ _ |a DKFZ-2020-01365
041 _ _ |a eng
082 _ _ |a 540
100 1 _ |a Hardikar, Sheetal
|b 0
245 _ _ |a Impact of Pre-blood Collection Factors on Plasma Metabolomic Profiles.
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594720649_24603
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Demographic, lifestyle and biospecimen-related factors at the time of blood collection can influence metabolite levels in epidemiological studies. Identifying the major influences on metabolite concentrations is critical to designing appropriate sample collection protocols and considering covariate adjustment in metabolomics analyses. We examined the association of age, sex, and other short-term pre-blood collection factors (time of day, season, fasting duration, physical activity, NSAID use, smoking and alcohol consumption in the days prior to collection) with 133 targeted plasma metabolites (acylcarnitines, amino acids, biogenic amines, sphingolipids, glycerophospholipids, and hexoses) among 108 individuals that reported exposures within 48 h before collection. The differences in mean metabolite concentrations were assessed between groups based on pre-collection factors using two-sided t-tests and ANOVA with FDR correction. Percent differences in metabolite concentrations were negligible across season, time of day of collection, fasting status or lifestyle behaviors at the time of collection, including physical activity or the use of tobacco, alcohol or NSAIDs. The metabolites differed in concentration between the age and sex categories for 21.8% and 14.3% metabolites, respectively. In conclusion, extrinsic factors in the short period prior to collection were not meaningfully associated with concentrations of selected endogenous metabolites in a cross-sectional sample, though metabolite concentrations differed by age and sex. Larger studies with more coverage of the human metabolome are warranted.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Albrechtsen, Richard D
|b 1
700 1 _ |a Achaintre, David
|b 2
700 1 _ |a Lin, Tengda
|b 3
700 1 _ |a Pauleck, Svenja
|b 4
700 1 _ |a Playdon, Mary
|b 5
700 1 _ |a Holowatyj, Andreana N
|b 6
700 1 _ |a Gigic, Biljana
|b 7
700 1 _ |a Schrotz-King, Petra
|0 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
|b 8
|u dkfz
700 1 _ |a Boehm, Juergen
|b 9
700 1 _ |a Habermann, Nina
|b 10
700 1 _ |a Brezina, Stefanie
|b 11
700 1 _ |a Gsur, Andrea
|b 12
700 1 _ |a van Roekel, Eline H
|b 13
700 1 _ |a Weijenberg, Matty P
|b 14
700 1 _ |a Keski-Rahkonen, Pekka
|b 15
700 1 _ |a Scalbert, Augustin
|b 16
700 1 _ |a Ose, Jennifer
|b 17
700 1 _ |a Ulrich, Cornelia M
|b 18
773 _ _ |a 10.3390/metabo10050213
|g Vol. 10, no. 5, p. 213 -
|0 PERI:(DE-600)2662251-8
|n 5
|p 213
|t Metabolites
|v 10
|y 2020
|x 2218-1989
909 C O |o oai:inrepo02.dkfz.de:157074
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METABOLITES : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-10
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-10
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21