000157090 001__ 157090
000157090 005__ 20240229123128.0
000157090 0247_ $$2doi$$a10.1182/bloodadvances.2020001502
000157090 0247_ $$2pmid$$apmid:32433745
000157090 0247_ $$2pmc$$apmc:PMC7252541
000157090 0247_ $$2ISSN$$a2473-9529
000157090 0247_ $$2ISSN$$a2473-9537
000157090 0247_ $$2ISSN$$a2476-9537
000157090 0247_ $$2altmetric$$aaltmetric:82462008
000157090 037__ $$aDKFZ-2020-01381
000157090 041__ $$aeng
000157090 082__ $$a610
000157090 1001_ $$aWent, Molly$$b0
000157090 245__ $$aSearch for multiple myeloma risk factors using Mendelian randomization.
000157090 260__ $$aWashington, DC$$bAmerican Society of Hematology$$c2020
000157090 3367_ $$2DRIVER$$aarticle
000157090 3367_ $$2DataCite$$aOutput Types/Journal article
000157090 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614089475_21102
000157090 3367_ $$2BibTeX$$aARTICLE
000157090 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000157090 3367_ $$00$$2EndNote$$aJournal Article
000157090 520__ $$aThe etiology of multiple myeloma (MM) is poorly understood. Summary data from genome-wide association studies (GWASs) of multiple phenotypes can be exploited in a Mendelian randomization (MR) phenome-wide association study (PheWAS) to search for factors influencing MM risk. We performed an MR-PheWAS analyzing 249 phenotypes, proxied by 10 225 genetic variants, and summary genetic data from a GWAS of 7717 MM cases and 29 304 controls. Odds ratios (ORs) per 1 standard deviation increase in each phenotype were estimated under an inverse variance weighted random effects model. A Bonferroni-corrected threshold of P = 2 × 10-4 was considered significant, whereas P < .05 was considered suggestive of an association. Although no significant associations with MM risk were observed among the 249 phenotypes, 28 phenotypes showed evidence suggestive of association, including increased levels of serum vitamin B6 and blood carnitine (P = 1.1 × 10-3) with greater MM risk and ω-3 fatty acids (P = 5.4 × 10-4) with reduced MM risk. A suggestive association between increased telomere length and reduced MM risk was also noted; however, this association was primarily driven by the previously identified risk variant rs10936599 at 3q26 (TERC). Although not statistically significant, increased body mass index was associated with increased risk (OR, 1.10; 95% confidence interval, 0.99-1.22), supporting findings from a previous meta-analysis of prospective observational studies. Our study did not provide evidence supporting any modifiable factors examined as having a major influence on MM risk; however, it provides insight into factors for which the evidence has previously been mixed.
000157090 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000157090 588__ $$aDataset connected to CrossRef, PubMed,
000157090 7001_ $$aCornish, Alex J$$b1
000157090 7001_ $$aLaw, Philip J$$b2
000157090 7001_ $$aKinnersley, Ben$$b3
000157090 7001_ $$avan Duin, Mark$$b4
000157090 7001_ $$aWeinhold, Niels$$b5
000157090 7001_ $$0P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696$$aFörsti, Asta$$b6$$udkfz
000157090 7001_ $$aHansson, Markus$$b7
000157090 7001_ $$aSonneveld, Pieter$$b8
000157090 7001_ $$aGoldschmidt, Hartmut$$b9
000157090 7001_ $$aMorgan, Gareth J$$b10
000157090 7001_ $$0P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aHemminki, Kari$$b11$$udkfz
000157090 7001_ $$aNilsson, Björn$$b12
000157090 7001_ $$aKaiser, Martin$$b13
000157090 7001_ $$aHoulston, Richard S$$b14
000157090 773__ $$0PERI:(DE-600)2876449-3$$a10.1182/bloodadvances.2020001502$$gVol. 4, no. 10, p. 2172 - 2179$$n10$$p2172 - 2179$$tBlood advances$$v4$$x2473-9537$$y2020
000157090 909CO $$ooai:inrepo02.dkfz.de:157090$$pVDB
000157090 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000157090 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000157090 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000157090 9141_ $$y2020
000157090 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-02
000157090 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-02
000157090 9201_ $$0I:(DE-He78)C050-20160331$$kC050$$lMolekular-Genetische Epidemiologie$$x0
000157090 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000157090 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x2
000157090 980__ $$ajournal
000157090 980__ $$aVDB
000157090 980__ $$aI:(DE-He78)C050-20160331
000157090 980__ $$aI:(DE-He78)HD01-20160331
000157090 980__ $$aI:(DE-He78)B062-20160331
000157090 980__ $$aUNRESTRICTED