000157143 001__ 157143
000157143 005__ 20240229133506.0
000157143 0247_ $$2doi$$a10.1016/j.euf.2020.06.020
000157143 0247_ $$2pmid$$apmid:32660838
000157143 0247_ $$2altmetric$$aaltmetric:85602670
000157143 037__ $$aDKFZ-2020-01429
000157143 041__ $$aeng
000157143 082__ $$a610
000157143 1001_ $$aTschirdewahn, Stephan$$b0
000157143 245__ $$aDetection of Significant Prostate Cancer Using Target Saturation in Transperineal Magnetic Resonance Imaging/Transrectal Ultrasonography-fusion Biopsy.
000157143 260__ $$aAmsterdam$$bElsevier$$c2021
000157143 3367_ $$2DRIVER$$aarticle
000157143 3367_ $$2DataCite$$aOutput Types/Journal article
000157143 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642069663_472
000157143 3367_ $$2BibTeX$$aARTICLE
000157143 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000157143 3367_ $$00$$2EndNote$$aJournal Article
000157143 500__ $$a2021 Nov;7(6):1300-1307
000157143 520__ $$aMultiparametric magnetic resonance imaging (mpMRI) and targeted biopsies (TBs) facilitate accurate detection of significant prostate cancer (sPC). However, it remains unclear how many cores should be applied per target.To assess sPC detection rates of two different target-dependent magnetic resonance imaging (MRI)/transrectal ultrasonography (TRUS)-fusion biopsy approaches (TB and target saturation [TS]) compared with extended systematic biopsies (SBs).Retrospective single-centre outcome of transperineal MRI/TRUS-fusion biopsies of 213 men was evaluated. All men underwent TB with a median of four cores per MRI lesion, followed by a median of 24 SBs, performed by experienced urologists. Cancer and sPC (International Society of Urological Pathology grade group ≥2) detection rates were analysed. TB was compared with SB and TS, with nine cores per target, calculated by the Ginsburg scheme and using individual cores of the lesion and its 'penumbra'.Cancer detection rates were calculated for TS, TB, and SB at both lesion and patient level. Combination of SB + TB served as a reference. Statistical differences in prostate cancer (PC) detection between groups were calculated using McNemar's tests with confidence intervals.TS detected 99% of 134 sPC lesions, which was significantly higher than the detection by TB (87%, p = 0.001) and SB (82%, p < 0.001). SB detected significantly more of the 72 low-risk PC lesions than TB (99% vs 68%, p < 0.001) and 10% (p = 0.15) more than that detected by TS. At a per-patient level, 99% of men harbouring sPC were detected by TS. This was significantly higher than that by TB and SB (89%, p = 0.03 and 81%, p = 0.001, respectively). Limitations include limited generalisability, as a transperineal biopsy route was used.TS detected significantly more cases of sPC than TB and extended SB. Given that both 99% of sPC lesions and men harbouring sPC were identified by TS, the results suggest that this approach allows to omit SB cores without compromising sPC detection.Target saturation of magnetic resonance imaging-suspicious prostate lesions provides excellent cancer detection and finds fewer low-risk tumours than the current gold standard combination of targeted and systematic biopsies.
000157143 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000157143 588__ $$aDataset connected to CrossRef, PubMed,
000157143 7001_ $$0P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aWiesenfarth, Manuel$$b1$$udkfz
000157143 7001_ $$0P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aBonekamp, David$$b2$$udkfz
000157143 7001_ $$aPüllen, Lukas$$b3
000157143 7001_ $$aReis, Henning$$b4
000157143 7001_ $$aPanic, Andrej$$b5
000157143 7001_ $$aKesch, Claudia$$b6
000157143 7001_ $$aDarr, Christopher$$b7
000157143 7001_ $$aHeß, Jochen$$b8
000157143 7001_ $$aGiganti, Francesco$$b9
000157143 7001_ $$aMoore, Caroline M$$b10
000157143 7001_ $$aGuberina, Nika$$b11
000157143 7001_ $$aForsting, Michael$$b12
000157143 7001_ $$aWetter, Axel$$b13
000157143 7001_ $$aHadaschik, Boris$$b14
000157143 7001_ $$0P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aRadtke, Jan Philipp$$b15$$eLast author$$udkfz
000157143 773__ $$0PERI:(DE-600)2861750-2$$a10.1016/j.euf.2020.06.020$$gp. S2405456920301863$$n6$$p1300-1307$$tEuropean urology focus$$v7$$x2405-4569$$y2021
000157143 909CO $$ooai:inrepo02.dkfz.de:157143$$pVDB
000157143 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000157143 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000157143 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000157143 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000157143 9141_ $$y2021
000157143 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000157143 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000157143 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000157143 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-18
000157143 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000157143 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000157143 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000157143 9202_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000157143 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000157143 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x1
000157143 980__ $$ajournal
000157143 980__ $$aVDB
000157143 980__ $$aI:(DE-He78)C060-20160331
000157143 980__ $$aI:(DE-He78)E010-20160331
000157143 980__ $$aUNRESTRICTED