000157145 001__ 157145
000157145 005__ 20240229123130.0
000157145 0247_ $$2doi$$a10.1186/s13014-020-01568-6
000157145 0247_ $$2pmid$$apmid:32660504
000157145 0247_ $$2altmetric$$aaltmetric:85815794
000157145 037__ $$aDKFZ-2020-01431
000157145 041__ $$aeng
000157145 082__ $$a610
000157145 1001_ $$00000-0002-3446-5469$$aHer, E. J.$$b0
000157145 245__ $$aVoxel-level biological optimisation of prostate IMRT using patient-specific tumour location and clonogen density derived from mpMRI.
000157145 260__ $$aLondon$$bBioMed Central$$c2020
000157145 3367_ $$2DRIVER$$aarticle
000157145 3367_ $$2DataCite$$aOutput Types/Journal article
000157145 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594904889_28778
000157145 3367_ $$2BibTeX$$aARTICLE
000157145 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000157145 3367_ $$00$$2EndNote$$aJournal Article
000157145 520__ $$aThis study aimed to develop a framework for optimising prostate intensity-modulated radiotherapy (IMRT) based on patient-specific tumour biology, derived from multiparametric MRI (mpMRI). The framework included a probabilistic treatment planning technique in the effort to yield dose distributions with an improved expected treatment outcome compared with uniform-dose planning approaches.IMRT plans were generated for five prostate cancer patients using two inverse planning methods: uniform-dose to the planning target volume and probabilistic biological optimisation for clinical target volume tumour control probability (TCP) maximisation. Patient-specific tumour location and clonogen density information were derived from mpMRI and geometric uncertainties were incorporated in the TCP calculation. Potential reduction in dose to sensitive structures was assessed by comparing dose metrics of uniform-dose plans with biologically-optimised plans of an equivalent level of expected tumour control.The planning study demonstrated biological optimisation has the potential to reduce expected normal tissue toxicity without sacrificing local control by shaping the dose distribution to the spatial distribution of tumour characteristics. On average, biologically-optimised plans achieved 38.6% (p-value: < 0.01) and 51.2% (p-value: < 0.01) reduction in expected rectum and bladder equivalent uniform dose, respectively, when compared with uniform-dose planning.It was concluded that varying the dose distribution within the prostate to take account for each patient's clonogen distribution was feasible. Lower doses to normal structures compared to uniform-dose plans was possible whilst providing robust plans against geometric uncertainties. Further validation in a larger cohort is warranted along with considerations for adaptive therapy and limiting urethral dose.
000157145 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000157145 588__ $$aDataset connected to CrossRef, PubMed,
000157145 7001_ $$aHaworth, A.$$b1
000157145 7001_ $$aReynolds, H. M.$$b2
000157145 7001_ $$aSun, Y.$$b3
000157145 7001_ $$aKennedy, A.$$b4
000157145 7001_ $$aPanettieri, V.$$b5
000157145 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, M.$$b6$$udkfz
000157145 7001_ $$aWilliams, S.$$b7
000157145 7001_ $$aEbert, M. A.$$b8
000157145 773__ $$0PERI:(DE-600)2224965-5$$a10.1186/s13014-020-01568-6$$gVol. 15, no. 1, p. 172$$n1$$p172$$tRadiation oncology$$v15$$x1748-717X$$y2020
000157145 909CO $$ooai:inrepo02.dkfz.de:157145$$pVDB
000157145 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000157145 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000157145 9141_ $$y2020
000157145 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-12
000157145 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-12
000157145 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-12
000157145 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000157145 980__ $$ajournal
000157145 980__ $$aVDB
000157145 980__ $$aI:(DE-He78)E040-20160331
000157145 980__ $$aUNRESTRICTED