001     157166
005     20240229123130.0
024 7 _ |a 10.1038/s41408-020-00341-y
|2 doi
024 7 _ |a pmid:32678078
|2 pmid
024 7 _ |a altmetric:85915114
|2 altmetric
037 _ _ |a DKFZ-2020-01446
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Sánchez-Maldonado, J. M.
|b 0
245 _ _ |a Host immune genetic variations influence the risk of developing acute myeloid leukaemia: results from the NuCLEAR consortium.
260 _ _ |a London [u.a.]
|c 2020
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600330905_28430
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The purpose of this study was to conduct a two-stage case control association study including 654 acute myeloid leukaemia (AML) patients and 3477 controls ascertained through the NuCLEAR consortium to evaluate the effect of 27 immune-related single nucleotide polymorphisms (SNPs) on AML risk. In a pooled analysis of cohort studies, we found that carriers of the IL13rs1295686A/A genotype had an increased risk of AML (PCorr = 0.0144) whereas carriers of the VEGFArs25648T allele had a decreased risk of developing the disease (PCorr = 0.00086). In addition, we found an association of the IL8rs2227307 SNP with a decreased risk of developing AML that remained marginally significant after multiple testing (PCorr = 0.072). Functional experiments suggested that the effect of the IL13rs1295686 SNP on AML risk might be explained by its role in regulating IL1Ra secretion that modulates AML blast proliferation. Likewise, the protective effect of the IL8rs2227307 SNP might be mediated by TLR2-mediated immune responses that affect AML blast viability, proliferation and chemorresistance. Despite the potential interest of these results, additional functional studies are still warranted to unravel the mechanisms by which these variants modulate the risk of AML. These findings suggested that IL13, VEGFA and IL8 SNPs play a role in modulating AML risk.
536 _ _ |a 319H - Addenda (POF3-319H)
|0 G:(DE-HGF)POF3-319H
|c POF3-319H
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Campa, D.
|b 1
700 1 _ |a Springer, J.
|b 2
700 1 _ |a Badiola, J.
|0 0000-0003-0660-9186
|b 3
700 1 _ |a Niazi, Y.
|0 P:(DE-He78)0681b959321f574e7ad1869cc3011346
|b 4
|u dkfz
700 1 _ |a Moñiz-Díez, A.
|b 5
700 1 _ |a Hernández-Mohedo, F.
|b 6
700 1 _ |a González-Sierra, P.
|0 0000-0002-6492-1728
|b 7
700 1 _ |a Ter Horst, R.
|b 8
700 1 _ |a Macauda, A.
|0 P:(DE-He78)b791a47b92809f7c54501331f72e0243
|b 9
|u dkfz
700 1 _ |a Brezina, S.
|0 0000-0001-5238-6900
|b 10
700 1 _ |a Cunha, C.
|b 11
700 1 _ |a Lackner, M.
|b 12
700 1 _ |a López-Nevot, M. A.
|b 13
700 1 _ |a Fianchi, L.
|b 14
700 1 _ |a Pagano, L.
|0 0000-0001-8287-928X
|b 15
700 1 _ |a López-Fernández, E.
|b 16
700 1 _ |a Potenza, L.
|b 17
700 1 _ |a Luppi, M.
|b 18
700 1 _ |a Moratalla, L.
|b 19
700 1 _ |a Rodríguez-Sevilla, J. J.
|b 20
700 1 _ |a Fonseca, J. E.
|b 21
700 1 _ |a Tormo, M.
|b 22
700 1 _ |a Solano, C.
|b 23
700 1 _ |a Clavero, E.
|b 24
700 1 _ |a Romero, A.
|b 25
700 1 _ |a Li, Y.
|b 26
700 1 _ |a Lass-Flörl, C.
|b 27
700 1 _ |a Einsele, H.
|b 28
700 1 _ |a Vazquez, L.
|b 29
700 1 _ |a Loeffler, J.
|b 30
700 1 _ |a Hemminki, K.
|0 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
|b 31
|u dkfz
700 1 _ |a Carvalho, A.
|0 0000-0001-8935-8030
|b 32
700 1 _ |a Netea, M. G.
|b 33
700 1 _ |a Gsur, A.
|0 0000-0002-9795-1528
|b 34
700 1 _ |a Dumontet, C.
|b 35
700 1 _ |a Canzian, F.
|0 P:(DE-He78)5323704270b6393dcea70186ffd86bca
|b 36
|u dkfz
700 1 _ |a Försti, A.
|0 P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696
|b 37
|u dkfz
700 1 _ |a Jurado, M.
|b 38
700 1 _ |a Sainz, J.
|0 0000-0002-9355-2423
|b 39
773 _ _ |a 10.1038/s41408-020-00341-y
|g Vol. 10, no. 7, p. 75
|0 PERI:(DE-600)2600560-8
|n 7
|p 75
|t Blood cancer journal
|v 10
|y 2020
|x 2044-5385
909 C O |p VDB
|o oai:inrepo02.dkfz.de:157166
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)0681b959321f574e7ad1869cc3011346
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)b791a47b92809f7c54501331f72e0243
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 31
|6 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 36
|6 P:(DE-He78)5323704270b6393dcea70186ffd86bca
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 37
|6 P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-319H
|2 G:(DE-HGF)POF3-300
|v Addenda
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BLOOD CANCER J : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-06
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BLOOD CANCER J : 2018
|d 2020-01-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-06
920 1 _ |0 I:(DE-He78)C050-20160331
|k C050
|l Molekular-Genetische Epidemiologie
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 1
920 1 _ |0 I:(DE-He78)C055-20160331
|k C055
|l C055 Genomische Epidemiologie
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C050-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)C055-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21