000157332 001__ 157332
000157332 005__ 20240229133506.0
000157332 0247_ $$2doi$$a10.1093/biostatistics/kxaa027
000157332 0247_ $$2pmid$$apmid:32735010
000157332 0247_ $$2ISSN$$a1465-4644
000157332 0247_ $$2ISSN$$a1468-4357
000157332 0247_ $$2altmetric$$aaltmetric:86903380
000157332 037__ $$aDKFZ-2020-01561
000157332 041__ $$aeng
000157332 082__ $$a610
000157332 1001_ $$0P:(DE-He78)b5d9469407737829d5348adb615655c6$$aCalderazzo, Silvia$$b0$$eFirst author$$udkfz
000157332 245__ $$aA decision-theoretic approach to Bayesian clinical trial design and evaluation of robustness to prior-data conflict.
000157332 260__ $$aOxford [u.a.]$$bOxford Univ. Press$$c2022
000157332 3367_ $$2DRIVER$$aarticle
000157332 3367_ $$2DataCite$$aOutput Types/Journal article
000157332 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642583267_1941
000157332 3367_ $$2BibTeX$$aARTICLE
000157332 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000157332 3367_ $$00$$2EndNote$$aJournal Article
000157332 500__ $$a Volume 23, Issue 1, January 2022, Pages 328–344
000157332 520__ $$aBayesian clinical trials allow taking advantage of relevant external information through the elicitation of prior distributions, which influence Bayesian posterior parameter estimates and test decisions. However, incorporation of historical information can have harmful consequences on the trial's frequentist (conditional) operating characteristics in case of inconsistency between prior information and the newly collected data. A compromise between meaningful incorporation of historical information and strict control of frequentist error rates is therefore often sought. Our aim is thus to review and investigate the rationale and consequences of different approaches to relaxing strict frequentist control of error rates from a Bayesian decision-theoretic viewpoint. In particular, we define an integrated risk which incorporates losses arising from testing, estimation, and sampling. A weighted combination of the integrated risk addends arising from testing and estimation allows moving smoothly between these two targets. Furthermore, we explore different possible elicitations of the test error costs, leading to test decisions based either on posterior probabilities, or solely on Bayes factors. Sensitivity analyses are performed following the convention which makes a distinction between the prior of the data-generating process, and the analysis prior adopted to fit the data. Simulation in the case of normal and binomial outcomes and an application to a one-arm proof-of-concept trial, exemplify how such analysis can be conducted to explore sensitivity of the integrated risk, the operating characteristics, and the optimal sample size, to prior-data conflict. Robust analysis prior specifications, which gradually discount potentially conflicting prior information, are also included for comparison. Guidance with respect to cost elicitation, particularly in the context of a Phase II proof-of-concept trial, is provided.
000157332 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000157332 588__ $$aDataset connected to CrossRef, PubMed,
000157332 7001_ $$0P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aWiesenfarth, Manuel$$b1$$udkfz
000157332 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b2$$eLast author$$udkfz
000157332 773__ $$0PERI:(DE-600)2020601-X$$a10.1093/biostatistics/kxaa027$$gp. kxaa027$$n1$$p328–344$$tBiostatistics$$v23$$x1468-4357$$y2022
000157332 909CO $$ooai:inrepo02.dkfz.de:157332$$pVDB
000157332 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b5d9469407737829d5348adb615655c6$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000157332 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000157332 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000157332 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000157332 9141_ $$y2021
000157332 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000157332 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-06
000157332 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-09$$wger
000157332 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000157332 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000157332 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000157332 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000157332 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000157332 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOSTATISTICS : 2021$$d2022-11-09
000157332 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000157332 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000157332 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOSTATISTICS : 2021$$d2022-11-09
000157332 9202_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000157332 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000157332 9200_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000157332 980__ $$ajournal
000157332 980__ $$aVDB
000157332 980__ $$aI:(DE-He78)C060-20160331
000157332 980__ $$aUNRESTRICTED