001     157332
005     20240229133506.0
024 7 _ |a 10.1093/biostatistics/kxaa027
|2 doi
024 7 _ |a pmid:32735010
|2 pmid
024 7 _ |a 1465-4644
|2 ISSN
024 7 _ |a 1468-4357
|2 ISSN
024 7 _ |a altmetric:86903380
|2 altmetric
037 _ _ |a DKFZ-2020-01561
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Calderazzo, Silvia
|0 P:(DE-He78)b5d9469407737829d5348adb615655c6
|b 0
|e First author
|u dkfz
245 _ _ |a A decision-theoretic approach to Bayesian clinical trial design and evaluation of robustness to prior-data conflict.
260 _ _ |a Oxford [u.a.]
|c 2022
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642583267_1941
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 23, Issue 1, January 2022, Pages 328–344
520 _ _ |a Bayesian clinical trials allow taking advantage of relevant external information through the elicitation of prior distributions, which influence Bayesian posterior parameter estimates and test decisions. However, incorporation of historical information can have harmful consequences on the trial's frequentist (conditional) operating characteristics in case of inconsistency between prior information and the newly collected data. A compromise between meaningful incorporation of historical information and strict control of frequentist error rates is therefore often sought. Our aim is thus to review and investigate the rationale and consequences of different approaches to relaxing strict frequentist control of error rates from a Bayesian decision-theoretic viewpoint. In particular, we define an integrated risk which incorporates losses arising from testing, estimation, and sampling. A weighted combination of the integrated risk addends arising from testing and estimation allows moving smoothly between these two targets. Furthermore, we explore different possible elicitations of the test error costs, leading to test decisions based either on posterior probabilities, or solely on Bayes factors. Sensitivity analyses are performed following the convention which makes a distinction between the prior of the data-generating process, and the analysis prior adopted to fit the data. Simulation in the case of normal and binomial outcomes and an application to a one-arm proof-of-concept trial, exemplify how such analysis can be conducted to explore sensitivity of the integrated risk, the operating characteristics, and the optimal sample size, to prior-data conflict. Robust analysis prior specifications, which gradually discount potentially conflicting prior information, are also included for comparison. Guidance with respect to cost elicitation, particularly in the context of a Phase II proof-of-concept trial, is provided.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 1
|u dkfz
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.1093/biostatistics/kxaa027
|g p. kxaa027
|0 PERI:(DE-600)2020601-X
|n 1
|p 328–344
|t Biostatistics
|v 23
|y 2022
|x 1468-4357
909 C O |p VDB
|o oai:inrepo02.dkfz.de:157332
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b5d9469407737829d5348adb615655c6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-06
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOSTATISTICS : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BIOSTATISTICS : 2021
|d 2022-11-09
920 2 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
920 0 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21