001     157334
005     20240229123134.0
024 7 _ |a 10.1002/ijc.33236
|2 doi
024 7 _ |a pmid:32734650
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
024 7 _ |a altmetric:86897786
|2 altmetric
037 _ _ |a DKFZ-2020-01563
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Stepien, Magdalena
|b 0
245 _ _ |a Metabolic perturbations prior to hepatocellular carcinoma diagnosis - Findings from a prospective observational cohort study.
260 _ _ |a Bognor Regis
|c 2020
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1609158878_26462
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Feb 1;148(3):609-625
520 _ _ |a Hepatocellular carcinoma (HCC) development entails changes in liver metabolism. Current knowledge on metabolic perturbations in HCC is derived mostly from case-control designs, with sparse information from prospective cohorts. Our objective was to apply comprehensive metabolite profiling to detect metabolites whose serum concentrations are associated with HCC development, using biological samples from within the prospective EPIC cohort (>520 000 participants,), where we identified 129 HCC cases matched 1:1 to controls. We conducted high resolution untargeted liquid chromatography-mass spectrometry based metabolomics on serum samples collected at recruitment prior to cancer diagnosis. Multivariable conditional logistic regression was applied controlling for dietary habits, alcohol consumption, smoking, body size, hepatitis infection and liver dysfunction. Corrections for multiple comparisons were applied. Of 9206 molecular features detected, 220 discriminated HCC cases from controls. Detailed feature annotation revealed 92 metabolites associated with HCC risk; 14 of which were unambiguously identified using pure reference standards. Positive HCC risk associations were observed for N1-acetylspermidine, isatin, p-hydroxyphenyllactic acid, tyrosine, sphingosine, L,L-cyclo(leucylprolyl), glycochenodeoxycholic acid, glycocholic acid, and 7-methylguanine. Inverse risk associations were observed for retinol, dehydroepiandrosterone sulfate, glycerophosphocholine, γ-carboxyethyl hydroxychroman, and creatine. Discernible differences for these metabolites were observed between cases and controls up to 10 years prior to diagnosis. Our observations highlight the diversity of metabolic perturbations involved in HCC development and replicate previous observations (metabolism of bile acids, amino acids, phospholipids) made in Asian and Scandinavian populations. These findings emphasize the role of metabolic pathways associated with steroid metabolism and immunity and specific dietary and environmental exposures in HCC development. This article is protected by copyright. All rights reserved.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Keski-Rahkonen, Pekka
|b 1
700 1 _ |a Kiss, Agneta
|b 2
700 1 _ |a Robinot, Nivonirina
|b 3
700 1 _ |a Duarte-Salles, Talita
|b 4
700 1 _ |a Murphy, Neil
|0 0000-0003-3347-8249
|b 5
700 1 _ |a Perlemuter, Gabriel
|b 6
700 1 _ |a Viallon, Vivian
|b 7
700 1 _ |a Tjønneland, Anne
|b 8
700 1 _ |a Rostgaard-Hansen, Agnetha Linn
|b 9
700 1 _ |a Dahm, Christina C
|b 10
700 1 _ |a Overvad, Kim
|b 11
700 1 _ |a Boutron-Ruault, Marie-Christine
|0 0000-0002-5956-5693
|b 12
700 1 _ |a Mancini, Francesca Romana
|0 0000-0003-2297-3869
|b 13
700 1 _ |a Mahamat-Saleh, Yahya
|b 14
700 1 _ |a Aleksandrova, Krasimira
|b 15
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 16
|u dkfz
700 1 _ |a Kühn, Tilman
|0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
|b 17
|u dkfz
700 1 _ |a Trichopoulou, Antonia
|b 18
700 1 _ |a Karakatsani, Anna
|b 19
700 1 _ |a Panico, Salvatore
|b 20
700 1 _ |a Tumino, Rosario
|b 21
700 1 _ |a Palli, Domenico
|b 22
700 1 _ |a Tagliabue, Giovanna
|b 23
700 1 _ |a Naccarati, Alessio
|b 24
700 1 _ |a Vermeulen, Roel C H
|b 25
700 1 _ |a Bueno-de-Mesquita, H Bas
|b 26
700 1 _ |a Weiderpass, Elisabete
|0 0000-0003-2237-0128
|b 27
700 1 _ |a Skeie, Guri
|b 28
700 1 _ |a Ramón Quirós, J.
|b 29
700 1 _ |a Ardanaz, Eva
|b 30
700 1 _ |a Mokoroa, Olatz
|b 31
700 1 _ |a Sala, Núria
|0 0000-0003-3585-7613
|b 32
700 1 _ |a Sánchez, Maria-Jose
|b 33
700 1 _ |a Huerta, José María
|b 34
700 1 _ |a Winkvist, Anna
|b 35
700 1 _ |a Harlid, Sophia
|b 36
700 1 _ |a Ohlsson, Bodil
|b 37
700 1 _ |a Sjöberg, Klas
|b 38
700 1 _ |a Schmidt, Julie A
|0 0000-0002-7733-8750
|b 39
700 1 _ |a Wareham, Nick
|b 40
700 1 _ |a Khaw, Kay-Tee
|b 41
700 1 _ |a Ferrari, Pietro
|b 42
700 1 _ |a Rothwell, Joseph A
|b 43
700 1 _ |a Gunter, Marc
|b 44
700 1 _ |a Riboli, Elio
|b 45
700 1 _ |a Scalbert, Augustin
|b 46
700 1 _ |a Jenab, Mazda
|0 0000-0002-0573-1852
|b 47
773 _ _ |a 10.1002/ijc.33236
|g p. ijc.33236
|0 PERI:(DE-600)1474822-8
|n 3
|p 609-625
|t International journal of cancer
|v 148
|y 2020
|x 1097-0215
909 C O |o oai:inrepo02.dkfz.de:157334
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2018
|d 2020-02-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-26
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21