000157338 001__ 157338 000157338 005__ 20240229123135.0 000157338 0247_ $$2doi$$a10.1002/mp.14414 000157338 0247_ $$2pmid$$apmid:32740930 000157338 0247_ $$2ISSN$$a0094-2405 000157338 0247_ $$2ISSN$$a1522-8541 000157338 0247_ $$2ISSN$$a2473-4209 000157338 0247_ $$2altmetric$$aaltmetric:87069571 000157338 037__ $$aDKFZ-2020-01567 000157338 041__ $$aeng 000157338 082__ $$a610 000157338 1001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b0$$eFirst author$$udkfz 000157338 245__ $$aAnalytical probabilistic modeling of dose-volume histograms. 000157338 260__ $$aCollege Park, Md.$$bAAPM$$c2020 000157338 3367_ $$2DRIVER$$aarticle 000157338 3367_ $$2DataCite$$aOutput Types/Journal article 000157338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609158793_26911 000157338 3367_ $$2BibTeX$$aARTICLE 000157338 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000157338 3367_ $$00$$2EndNote$$aJournal Article 000157338 500__ $$a#EA:E040#LA:E040#2020 Oct;47(10):5260-5273 000157338 520__ $$aRadiotherapy, especially with charged particles, is sensitive to executional and preparational uncertainties that propagate to uncertainty in dose and plan quality indicators, e. g., dose-volume histograms (DVHs). Current approaches to quantify and mitigate such uncertainties rely on explicitly computed error scenarios and are thus subject to statistical uncertainty and limitations regarding the underlying uncertainty model. Here we present an alternative, analytical method to approximate moments, in particular expectation value and (co)variance, of the probability distribution of DVH-points, and evaluate its accuracy on patient data.We use Analytical Probabilistic Modeling (APM) to derive moments of the probability distribution over individual DVH-points based on the probability distribution over dose. By using the computed moments to parameterize distinct probability distributions over DVH-points (here normal or beta distributions), not only the moments but also percentiles, i. e., α-DVHs, are computed. The model is subsequently evaluated on three patient cases (intracranial, paraspinal, prostate) in 30- and singlefraction scenarios by assuming the dose to follow a multivariate normal distribution, whose moments are computed in closed-form with APM. The results are compared to a benchmark based on discrete random sampling.The evaluation of the new probabilistic model on the three patient cases against a sampling benchmark proves its correctness under perfect assumptions as well as good agreement in realistic conditions. More precisely, ca. 90% of all computed expected DVH-points and their standard deviations agree within 1% volume with their empirical counterpart from sampling computations, for both fractionated and single fraction treatments. When computing α-DVHs, the assumption of a beta distribution achieved better agreement with empirical percentiles than the assumption of a normal distribution: While in both cases probabilities locally showed large deviations (up to ±0.2), the respective α -DVHs for α = {0:05; 0:5; 0:95} only showed small deviations in respective volume (up to ±5% volume for a normal distribution, and up to 2% for a beta distribution). A previously published model from literature, which was included for comparison, exhibited substantially larger deviations.With APM we could derive a mathematically exact description of moments of probability distributions over DVH-points given a probability distribution over dose. The model generalizes previous attempts and performs well for both choices of probability distributions, i. e., normal or beta distributions, over DVH-points. 000157338 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0 000157338 588__ $$aDataset connected to CrossRef, PubMed, 000157338 7001_ $$aHennig, Philipp$$b1 000157338 7001_ $$0P:(DE-He78)59c02b7b30ad8972cf422bb1c955956c$$aWieser, Hans-Peter$$b2 000157338 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b3$$eLast author$$udkfz 000157338 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.14414$$gp. mp.14414$$n10$$p5260-5273$$tMedical physics$$v47$$x2473-4209$$y2020 000157338 909CO $$ooai:inrepo02.dkfz.de:157338$$pVDB 000157338 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000157338 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59c02b7b30ad8972cf422bb1c955956c$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000157338 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000157338 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000157338 9141_ $$y2020 000157338 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger 000157338 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2018$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26 000157338 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26 000157338 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0 000157338 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0 000157338 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0 000157338 980__ $$ajournal 000157338 980__ $$aVDB 000157338 980__ $$aI:(DE-He78)E040-20160331 000157338 980__ $$aUNRESTRICTED