001     157626
005     20240229123142.0
024 7 _ |a 10.2147/CLEP.S256662
|2 doi
024 7 _ |a pmid:32821171
|2 pmid
024 7 _ |a pmc:PMC7417931
|2 pmc
024 7 _ |a altmetric:88686347
|2 altmetric
037 _ _ |a DKFZ-2020-01723
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Zheng, Guoqiao
|0 P:(DE-He78)98a8f1a22ffc460364a8a34499118103
|b 0
|e First author
|u dkfz
245 _ _ |a Incidence Differences Between First Primary Cancers and Second Primary Cancers Following Skin Squamous Cell Carcinoma as Etiological Clues.
260 _ _ |a Albany, Auckland
|c 2020
|b Dove Medical Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1683892555_20086
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C050#LA:C050#LA:C020#
520 _ _ |a Most literature on second primary cancers (SPCs) focuses on possible factors, which may increase the risk of these cancers, and little attention has been paid for the overall incidence differences between first primary cancers (FPCs) and same SPCs. We wanted to compare the incidence rates for all common cancers when these were diagnosed as FPCs and SPCs after invasive and in situ squamous cell carcinoma (SCC) of the skin, which are usually treated by surgery only.Cancers were identified from the Swedish Cancer Registry from the years 1990 through to 2015, and they included, in addition to skin cancers, 20 male cancers totaling 484,850 patients and 22 female cancers totaling 452,909 patients. Standardized incidence rates and relative risks (RRs) were calculated for sex-specific common cancers as FPC and as SPC after skin SCC. Spearman rank correlations were used in the analysis of incidence ranking of FPC and SPC.Of total, 29,061 men and 23,533 women developed invasive SCC and 27,842 men and 36,383 women in situ SCC. The total number of 20 other male cancers was 484,850 and of 22 female cancers it was 452,909. Rank correlations ranged from 0.90 to 0.96 (P~5×10-6), indicating that overall skin SCC did not interfere with SPC formation. The exceptions were increased SPC risks for melanoma, sharing risk factors with skin SCC, and non-Hodgkin and Hodgkin lymphoma, and cancers of the upper aerodigestive tract, connective tissue, and male and female genitals suggesting contribution by skin cancer initiated immune dysfunction.The incidence ranking of SPCs after skin cancers largely follows the incidence ranking of FPCs indicating that overall skin SCC does not greatly interfere with the intrinsic carcinogenic process. The main deviations in incidence between FPC and SPC appeared to be due to shared risk factors or immunological processes promoting immune responsive cancer types.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Sundquist, Kristina
|b 1
700 1 _ |a Sundquist, Jan
|0 0000-0001-7228-5015
|b 2
700 1 _ |a Försti, Asta
|0 P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696
|b 3
|u dkfz
700 1 _ |a Hemminki, Akseli
|0 0000-0001-7103-8530
|b 4
700 1 _ |a Hemminki, Kari
|0 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
|b 5
|e Last author
|u dkfz
773 _ _ |a 10.2147/CLEP.S256662
|g Vol. 12, p. 857 - 864
|0 PERI:(DE-600)2494772-6
|p 857 - 864
|t Clinical epidemiology
|v 12
|y 2020
|x 1179-1349
909 C O |p VDB
|o oai:inrepo02.dkfz.de:157626
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)98a8f1a22ffc460364a8a34499118103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN EPIDEMIOL : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-16
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC (No Version)
|0 LIC:(DE-HGF)CCBYNCNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-16
920 1 _ |0 I:(DE-He78)C050-20160331
|k C050
|l Molekular-Genetische Epidemiologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 2
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C050-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21