000157750 001__ 157750
000157750 005__ 20240229123143.0
000157750 0247_ $$2doi$$a10.1007/s00432-020-03358-9
000157750 0247_ $$2pmid$$apmid:32865618
000157750 0247_ $$2ISSN$$a0084-5353
000157750 0247_ $$2ISSN$$a0171-5216
000157750 0247_ $$2ISSN$$a0943-9382
000157750 0247_ $$2ISSN$$a1432-1335
000157750 0247_ $$2altmetric$$aaltmetric:89245662
000157750 037__ $$aDKFZ-2020-01787
000157750 041__ $$aeng
000157750 082__ $$a610
000157750 1001_ $$aChen, I-Peng$$b0
000157750 245__ $$aUV-type specific alteration of miRNA expression and its association with tumor progression and metastasis in SCC cell lines.
000157750 260__ $$aBerlin$$bSpringer42162$$c2020
000157750 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2020-08-31
000157750 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2020-12-01
000157750 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2020-12-01
000157750 3367_ $$2DRIVER$$aarticle
000157750 3367_ $$2DataCite$$aOutput Types/Journal article
000157750 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606232256_10650
000157750 3367_ $$2BibTeX$$aARTICLE
000157750 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000157750 3367_ $$00$$2EndNote$$aJournal Article
000157750 500__ $$a2020 Dec;146(12):3215-3231
000157750 520__ $$aUV exposure is the main risk factor for development of cutaneous squamous cell carcinoma (cSCC). While early detection greatly improves cSCC prognosis, locally advanced or metastatic cSCC has a severely impaired prognosis. Notably, the mechanisms of progression to metastatic cSCC are not well understood. We hypothesized that UV exposure of already transformed epithelial cSCC cells further induces changes which might be involved in the progression to metastatic cSCCs and that UV-inducible microRNAs (miRNAs) might play an important role.Thus, we analyzed the impact of UV radiation of different quality (UVA, UVB, UVA + UVB) on the miRNA expression pattern in established cell lines generated from primary and metastatic cSCCs (Met-1, Met-4) using the NanoString nCounter platform.This analysis revealed that the expression pattern of miRNAs depends on both the cell line used per se and on the quality of UV radiation. Comparison of UV-induced miRNAs in cSCC cell lines established from a primary tumor (Met-1) and the respective (un-irradiated) metastasis (Met-4) suggest that miR-7-5p, miR-29a-3p and miR-183-5p are involved in a UV-driven pathway of progression to metastasis. This notion is supported by the fact that these three miRNAs build up a network of 81 potential target genes involved e.g. in UVA/UVB-induced MAPK signaling and regulation of the epithelial-mesenchymal transition. As an example, PTEN, a target of UV-upregulated miRNAs (miR-29a-3p, miR-183-5p), could be shown to be down-regulated in response to UV radiation. We further identified CNOT8, the transcription complex subunit 8 of the CCR4-NOT complex, a deadenylase removing the poly(A) tail from miRNA-destabilized mRNAs, in the center of this network, targeted by all three miRNAs.In summary, our results demonstrate that UV radiation induces an miRNA expression pattern in primary SCC cell line partly resembling those of metastatic cell line, thus suggesting that UV radiation impacts SCC progression beyond initiation.
000157750 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000157750 542__ $$2Crossref$$i2020-08-31$$uhttps://www.springer.com/tdm
000157750 542__ $$2Crossref$$i2020-08-31$$uhttps://www.springer.com/tdm
000157750 588__ $$aDataset connected to CrossRef, PubMed,
000157750 7001_ $$aBender, Marc$$b1
000157750 7001_ $$0P:(DE-He78)451b11372e417a54000de500b90b7faa$$aSpassova, Ivelina$$b2$$udkfz
000157750 7001_ $$aHenning, Stefan$$b3
000157750 7001_ $$0P:(DE-He78)ddba8c79115a5d116dfaa636aaf3f126$$aKubat, Linda$$b4$$udkfz
000157750 7001_ $$0P:(DE-He78)3b5e56207f4d531fba922d7cca79f39a$$aFan, Kaiji$$b5$$udkfz
000157750 7001_ $$aDegenhardt, Sarah$$b6
000157750 7001_ $$aMhamdi-Ghodbani, Mouna$$b7
000157750 7001_ $$0P:(DE-He78)67371e467c2ee0e553f459c775360f6c$$aSriram, Ashwin$$b8$$udkfz
000157750 7001_ $$aVolkmer, Beate$$b9
000157750 7001_ $$0P:(DE-He78)c1895aa471c7ac9c7173045464b69b31$$aBoukamp, Petra$$b10$$udkfz
000157750 7001_ $$0P:(DE-He78)7bf2f090fe39a6cd6f0bccf5ea2d4fb3$$aBecker, Jürgen C$$b11$$udkfz
000157750 7001_ $$00000-0003-3479-9968$$aGreinert, Rüdiger$$b12
000157750 77318 $$2Crossref$$3journal-article$$a10.1007/s00432-020-03358-9$$bSpringer Science and Business Media LLC$$d2020-08-31$$n12$$p3215-3231$$tJournal of Cancer Research and Clinical Oncology$$v146$$x0171-5216$$y2020
000157750 773__ $$0PERI:(DE-600)1459285-X$$a10.1007/s00432-020-03358-9$$n12$$p3215-3231$$tJournal of cancer research and clinical oncology$$v146$$x0171-5216$$y2020
000157750 909CO $$ooai:inrepo02.dkfz.de:157750$$pVDB
000157750 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)451b11372e417a54000de500b90b7faa$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000157750 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ddba8c79115a5d116dfaa636aaf3f126$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000157750 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3b5e56207f4d531fba922d7cca79f39a$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000157750 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)67371e467c2ee0e553f459c775360f6c$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000157750 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c1895aa471c7ac9c7173045464b69b31$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000157750 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7bf2f090fe39a6cd6f0bccf5ea2d4fb3$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000157750 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000157750 9141_ $$y2020
000157750 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000157750 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000157750 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000157750 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CANCER RES CLIN : 2015
000157750 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000157750 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000157750 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000157750 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000157750 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000157750 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000157750 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000157750 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000157750 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000157750 9201_ $$0I:(DE-He78)ED01-20160331$$kED01$$lDKTK ED ES zentral$$x0
000157750 9201_ $$0I:(DE-He78)A110-20160331$$kA110$$lA110 Genetik der Hautcarcinogene$$x1
000157750 980__ $$ajournal
000157750 980__ $$aVDB
000157750 980__ $$aI:(DE-He78)ED01-20160331
000157750 980__ $$aI:(DE-He78)A110-20160331
000157750 980__ $$aUNRESTRICTED
000157750 999C5 $$1BD Adams$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cub.2014.06.043$$pR762 -$$tCurr Biol$$uAdams BD, Kasinski AL, Slack FJ (2014) Aberrant regulation and function of microRNAs in cancer. Curr Biol 24:R762–776. https://doi.org/10.1016/j.cub.2014.06.043$$v24$$y2014
000157750 999C5 $$1M Almahroos$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1540-9740.2004.02450.x$$p132 -$$tSkinmed$$uAlmahroos M, Kurban AK (2004a) Ultraviolet carcinogenesis in nonmelanoma skin cancer part II: review and update on epidemiologic correlations. Skinmed 3:132–139$$v3$$y2004
000157750 999C5 $$1M Almahroos$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1540-9740.2004.02331.x$$p29 -$$tSkinmed$$uAlmahroos M, Kurban AK (2004b) Ultraviolet carcinogenesis in nonmelanoma skin cancer. Part I: incidence rates in relation to geographic locations and in migrant populations. Skinmed 3:29–35 (quiz 35-26)$$v3$$y2004
000157750 999C5 $$1S Anfossi$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41571-018-0035-x$$tNat Rev Clin Oncol$$uAnfossi S, Babayan A, Pantel K, Calin GA (2018) Clinical utility of circulating non-coding RNAs—an update. Nat Rev Clin Oncol. https://doi.org/10.1038/s41571-018-0035-x$$y2018
000157750 999C5 $$1BK Armstrong$$2Crossref$$9-- missing cx lookup --$$a10.1016/S1011-1344(01)00198-1$$p8 -$$tJ Photochem Photobiol B$$uArmstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63:8–18$$v63$$y2001
000157750 999C5 $$1GA Calin$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrc1997$$p857 -$$tNat Rev Cancer$$uCalin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866. https://doi.org/10.1038/nrc1997$$v6$$y2006
000157750 999C5 $$1HJ Cha$$2Crossref$$9-- missing cx lookup --$$a10.3892/mmr.2014.2418$$p1663 -$$tMol Med Rep$$uCha HJ et al (2014) Identification of ultraviolet B radiationinduced microRNAs in normal human dermal papilla cells. Mol Med Rep 10:1663–1670. https://doi.org/10.3892/mmr.2014.2418$$v10$$y2014
000157750 999C5 $$1M Chakrabarti$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.brainres.2012.03.017$$p1 -$$tBrain Res$$uChakrabarti M, Khandkar M, Banik NL, Ray SK (2012) Alterations in expression of specific microRNAs by combination of 4-HPR and EGCG inhibited growth of human malignant neuroblastoma cells. Brain Res 1454:1–13. https://doi.org/10.1016/j.brainres.2012.03.017$$v1454$$y2012
000157750 999C5 $$1LW Chan$$2Crossref$$9-- missing cx lookup --$$a10.2174/156802612800166747$$p920 -$$tCurr Top Med Chem$$uChan LW, Wang FF, Cho WC (2012) Genomic sequence analysis of EGFR regulation by microRNAs in lung cancer. Curr Top Med Chem 12:920–926$$v12$$y2012
000157750 999C5 $$1F Chen$$2Crossref$$9-- missing cx lookup --$$a10.1002/jbt.20412$$p79 -$$tJ Biochem Mol Toxicol$$uChen F, Hu SJ (2012) Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: a review. J Biochem Mol Toxicol 26:79–86. https://doi.org/10.1002/jbt.20412$$v26$$y2012
000157750 999C5 $$1J Cheng$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2013.08.050$$p471 -$$tCell Rep$$uCheng J et al (2013) An extensive network of TET2-targeting MicroRNAs regulates malignant hematopoiesis. Cell Rep 5:471–481. https://doi.org/10.1016/j.celrep.2013.08.050$$v5$$y2013
000157750 999C5 $$1CM Coutinho-Camillo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cancergen.2015.04.004$$p382 -$$tCancer Genet$$uCoutinho-Camillo CM, Lourenco SV, de Araujo LL, Kowalski LP, Soares FA (2015) Expression of apoptosis-regulating miRNAs and target mRNAs in oral squamous cell carcinoma. Cancer Genet 208:382–389. https://doi.org/10.1016/j.cancergen.2015.04.004$$v208$$y2015
000157750 999C5 $$1C Darido$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ccr.2011.10.014$$p635 -$$tCancer Cell$$uDarido C et al (2011) Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 20:635–648. https://doi.org/10.1016/j.ccr.2011.10.014$$v20$$y2011
000157750 999C5 $$1H Du$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms12626$$p12626 -$$tNat Commun$$uDu H et al (2016) YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 7:12626. https://doi.org/10.1038/ncomms12626$$v7$$y2016
000157750 999C5 $$1M Fabbri$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0707628104$$p15805 -$$tProc Natl Acad Sci U S A$$uFabbri M et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810. https://doi.org/10.1073/pnas.0707628104$$v104$$y2007
000157750 999C5 $$1MR Fabian$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-biochem-060308-103103$$p351 -$$tAnnu Rev Biochem$$uFabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. https://doi.org/10.1146/annurev-biochem-060308-103103$$v79$$y2010
000157750 999C5 $$1K Fan$$2Crossref$$9-- missing cx lookup --$$a10.1158/1078-0432.CCR-18-1184$$p5873 -$$tClin Cancer Res$$uFan K et al (2018) Circulating cell-free miR-375 as surrogate marker of tumor burden in merkel cell carcinoma. Clin Cancer Res 24:5873–5882. https://doi.org/10.1158/1078-0432.CCR-18-1184$$v24$$y2018
000157750 999C5 $$1C Fang$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00277-011-1350-9$$p553 -$$tAnn Hematol$$uFang C et al (2012) Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann Hematol 91:553–559. https://doi.org/10.1007/s00277-011-1350-9$$v91$$y2012
000157750 999C5 $$1JM Gao$$2Crossref$$9-- missing cx lookup --$$a10.3892/ol.2018.7967$$p5056 -$$tOncol Lett$$uGao JM, Huang LZ, Huang ZG, He RQ (2018) Clinical value and potential pathways of miR-183-5p in bladder cancer: a study based on miRNA-seq data and bioinformatics analysis. Oncol Lett 15:5056–5070. https://doi.org/10.3892/ol.2018.7967$$v15$$y2018
000157750 999C5 $$1N Garcia-Sancha$$2Crossref$$9-- missing cx lookup --$$a10.3390/ijms20092181$$p2181 -$$tInt J Mol Sci$$uGarcia-Sancha N, Corchado-Cobos R, Perez-Losada J, Canueto J (2019) MicroRNA dysregulation in cutaneous squamous cell carcinoma. Int J Mol Sci 20:2181. https://doi.org/10.3390/ijms20092181$$v20$$y2019
000157750 999C5 $$1R Garzon$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0800135105$$p3945 -$$tProc Natl Acad Sci U S A$$uGarzon R et al (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 105:3945–3950. https://doi.org/10.1073/pnas.0800135105$$v105$$y2008
000157750 999C5 $$1KM Giles$$2Crossref$$9-- missing cx lookup --$$a10.18632/oncotarget.9421$$p31663 -$$tOncotarget$$uGiles KM et al (2016) microRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-kappaB. Oncotarget 7:31663–31680. https://doi.org/10.18632/oncotarget.9421$$v7$$y2016
000157750 999C5 $$1RG Glogau$$2Crossref$$9-- missing cx lookup --$$a10.1067/mjd.2000.103339$$p23 -$$tJ Am Acad Dermatol$$uGlogau RG (2000) The risk of progression to invasive disease. J Am Acad Dermatol 42:23–24. https://doi.org/10.1067/mjd.2000.103339$$v42$$y2000
000157750 999C5 $$1R Greussing$$2Crossref$$9-- missing cx lookup --$$a10.1186/1471-2164-14-224$$p224 -$$tBMC Genomics$$uGreussing R et al (2013) Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts. BMC Genomics 14:224. https://doi.org/10.1186/1471-2164-14-224$$v14$$y2013
000157750 999C5 $$1Z Gu$$2Crossref$$9-- missing cx lookup --$$a10.1093/bioinformatics/btw313$$p2847 -$$tBioinformatics$$uGu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. https://doi.org/10.1093/bioinformatics/btw313$$v32$$y2016
000157750 999C5 $$1M Harada$$2Crossref$$9-- missing cx lookup --$$a10.5582/bst.2016.01102$$p454 -$$tBiosci Trends$$uHarada M et al (2017) The expression of miR-124 increases in aged skin to cause cell senescence and it decreases in squamous cell carcinoma. Biosci Trends 10:454–459. https://doi.org/10.5582/bst.2016.01102$$v10$$y2017
000157750 999C5 $$1J Heinzelmann$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00345-010-0633-4$$p367 -$$tWorld J Urol$$uHeinzelmann J et al (2011) Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol 29:367–373. https://doi.org/10.1007/s00345-010-0633-4$$v29$$y2011
000157750 999C5 $$1LM Hollestein$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ejca.2012.01.003$$p2046 -$$tEur J Cancer$$uHollestein LM, de Vries E, Nijsten T (2012) Trends of cutaneous squamous cell carcinoma in the Netherlands: increased incidence rates, but stable relative survival and mortality 1989–2008. Eur J Cancer 48:2046–2053. https://doi.org/10.1016/j.ejca.2012.01.003$$v48$$y2012
000157750 999C5 $$1Y Ikeda$$2Crossref$$9-- missing cx lookup --$$a10.1158/1541-7786.MCR-11-0035$$p259 -$$tMol Cancer Res$$uIkeda Y, Tanji E, Makino N, Kawata S, Furukawa T (2012) MicroRNAs associated with mitogen-activated protein kinase in human pancreatic cancer. Mol Cancer Res 10:259–269. https://doi.org/10.1158/1541-7786.MCR-11-0035$$v10$$y2012
000157750 999C5 $$1MVC Issler$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0185794$$pe0185794 -$$tPLoS ONE$$uIssler MVC, Mombach JCM (2017) MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS ONE 12:e0185794. https://doi.org/10.1371/journal.pone.0185794$$v12$$y2017
000157750 999C5 $$1PA Jaskowiak$$2Crossref$$9-- missing cx lookup --$$a10.1186/1471-2105-15-S2-S2$$pS2 -$$tBMC Bioinformatics$$uJaskowiak PA, Campello RJ, Costa IG (2014) On the selection of appropriate distances for gene expression data clustering. BMC Bioinformatics 15(Suppl 2):S2. https://doi.org/10.1186/1471-2105-15-S2-S2$$v15$$y2014
000157750 999C5 $$1L Jiang$$2Crossref$$9-- missing cx lookup --$$a10.1042/BJ20100859$$p199 -$$tBiochem J$$uJiang L et al (2010) MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 432:199–205. https://doi.org/10.1042/BJ20100859$$v432$$y2010
000157750 999C5 $$1HM Jung$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M112.366518$$p29261 -$$tJ Biol Chem$$uJung HM et al (2012) Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer. J Biol Chem 287:29261–29272. https://doi.org/10.1074/jbc.M112.366518$$v287$$y2012
000157750 999C5 $$1X Kong$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0041523$$pe41523 -$$tPLoS ONE$$uKong X et al (2012) MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via targeting FAK expression. PLoS ONE 7:e41523. https://doi.org/10.1371/journal.pone.0041523$$v7$$y2012
000157750 999C5 $$1A Kraemer$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0083392$$pe83392 -$$tPLoS ONE$$uKraemer A et al (2013) UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes. PLoS ONE 8:e83392. https://doi.org/10.1371/journal.pone.0083392$$v8$$y2013
000157750 999C5 $$1JJ Kwon$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.omto.2018.12.011$$p173 -$$tMol Ther Oncolytics$$uKwon JJ, Factora TD, Dey S, Kota J (2019) A Systematic review of miR-29 in cancer. Mol Ther Oncolytics 12:173–194. https://doi.org/10.1016/j.omto.2018.12.011$$v12$$y2019
000157750 999C5 $$1H Lan$$2Crossref$$9-- missing cx lookup --$$a10.1155/2015/125094$$p125094 -$$tBiomed Res Int$$uLan H, Lu H, Wang X, Jin H (2015) MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Res Int 2015:125094. https://doi.org/10.1155/2015/125094$$v2015$$y2015
000157750 999C5 $$1CY Li$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12094-016-1516-y$$p162 -$$tClin Transl Oncol$$uLi CY et al (2017) Identification and functional characterization of microRNAs reveal a potential role in gastric cancer progression. Clin Transl Oncol 19:162–172. https://doi.org/10.1007/s12094-016-1516-y$$v19$$y2017
000157750 999C5 $$1G Li$$2Crossref$$9-- missing cx lookup --$$a10.14348/molcells.2018.2200$$p523 -$$tMol Cells$$uLi G, Li L, Sun Q, Wu J, Ge W, Lu G, Cai M (2018a) MicroRNA-3200-5p promotes osteosarcoma cell invasion via suppression of BRMS1. Mol Cells 41:523–531. https://doi.org/10.14348/molcells.2018.2200$$v41$$y2018
000157750 999C5 $$1W Li$$2Crossref$$9-- missing cx lookup --$$a10.1186/s13046-018-0898-9$$p223 -$$tJ Exp Clin Cancer Res$$uLi W, Zhang T, Guo L, Huang L (2018b) Regulation of PTEN expression by noncoding RNAs. J Exp Clin Cancer Res 37:223. https://doi.org/10.1186/s13046-018-0898-9$$v37$$y2018
000157750 999C5 $$1Y Li$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10620-013-2929-x$$p598 -$$tDig Dis Sci$$uLi Y, Liu Y, Xie P, Li F, Li G (2014) PAX6, a novel target of microRNA-7, promotes cellular proliferation and invasion in human colorectal cancer cells. Dig Dis Sci 59:598–606. https://doi.org/10.1007/s10620-013-2929-x$$v59$$y2014
000157750 999C5 $$1YY Li$$2Crossref$$9-- missing cx lookup --$$a10.1158/1078-0432.CCR-14-1773$$p1447 -$$tClin Cancer Res$$uLi YY, Hanna GJ, Laga AC, Haddad RI, Lorch JH, Hammerman PS (2015) Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clin Cancer Res 21:1447–1456. https://doi.org/10.1158/1078-0432.CCR-14-1773$$v21$$y2015
000157750 999C5 $$1G Liang$$2Crossref$$9-- missing cx lookup --$$a10.3892/mmr.2014.1901$$p904 -$$tMol Med Rep$$uLiang G, Li G, Wang Y, Lei W, Xiao Z (2014) Aberrant miRNA expression response to UV irradiation in human liver cancer cells. Mol Med Rep 9:904–910. https://doi.org/10.3892/mmr.2014.1901$$v9$$y2014
000157750 999C5 $$1HT Liu$$2Crossref$$9-- missing cx lookup --$$a10.1007/s13277-016-5436-9$$tTumour Biol$$uLiu HT, Gao P (2016) The roles of microRNAs related with progression and metastasis in human cancers. Tumour Biol. https://doi.org/10.1007/s13277-016-5436-9$$y2016
000157750 999C5 $$1Q Liu$$2Crossref$$9-- missing cx lookup --$$a10.3892/ol.2018.9646$$p883 -$$tOncol Lett$$uLiu Q, Geng P, Shi L, Wang Q, Wang P (2019a) miR-29 promotes osteosarcoma cell proliferation and migration by targeting PTEN. Oncol Lett 17:883–890. https://doi.org/10.3892/ol.2018.9646$$v17$$y2019
000157750 999C5 $$1S Liu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.febslet.2013.05.054$$p2247 -$$tFEBS Lett$$uLiu S, Zhang P, Chen Z, Liu M, Li X, Tang H (2013) MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett 587:2247–2253. https://doi.org/10.1016/j.febslet.2013.05.054$$v587$$y2013
000157750 999C5 $$1T Liu$$2Crossref$$9-- missing cx lookup --$$a10.3390/cancers11091247$$p1247 -$$tCancers (Basel)$$uLiu T, Wang Y, Chan AM (2019b) Multifaceted regulation of PTEN subcellular distributions and biological functions. Cancers (Basel) 11:1247. https://doi.org/10.3390/cancers11091247$$v11$$y2019
000157750 999C5 $$1Z Liu$$2Crossref$$9-- missing cx lookup --$$a10.3892/ijo.2014.2322$$p1571 -$$tInt J Oncol$$uLiu Z, Jiang Z, Huang J, Huang S, Li Y, Yu S, Liu X (2014) miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int J Oncol 44:1571–1580. https://doi.org/10.3892/ijo.2014.2322$$v44$$y2014
000157750 999C5 $$1KJ Livak$$2Crossref$$9-- missing cx lookup --$$a10.1006/meth.2001.1262$$p402 -$$tMethods$$uLivak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262$$v25$$y2001
000157750 999C5 $$1AJ Lowery$$2Crossref$$9-- missing cx lookup --$$a10.1186/1471-2407-10-502$$p502 -$$tBMC Cancer$$uLowery AJ, Miller N, Dwyer RM, Kerin MJ (2010) Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer 10:502. https://doi.org/10.1186/1471-2407-10-502$$v10$$y2010
000157750 999C5 $$1A Lujambio$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10888$$p347 -$$tNature$$uLujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482:347–355. https://doi.org/10.1038/nature10888$$v482$$y2012
000157750 999C5 $$1L Ma$$2Crossref$$9-- missing cx lookup --$$a10.1016/bs.acr.2016.07.004$$p165 -$$tAdv Cancer Res$$uMa L (2016) MicroRNA and metastasis. Adv Cancer Res 132:165–207. https://doi.org/10.1016/bs.acr.2016.07.004$$v132$$y2016
000157750 999C5 $$1KF Meza-Sosa$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0103987$$pe103987 -$$tPLoS ONE$$uMeza-Sosa KF, Perez-Garcia EI, Camacho-Concha N, Lopez-Gutierrez O, Pedraza-Alva G, Perez-Martinez L (2014) MiR-7 promotes epithelial cell transformation by targeting the tumor suppressor KLF4. PLoS ONE 9:e103987. https://doi.org/10.1371/journal.pone.0103987$$v9$$y2014
000157750 999C5 $$1F Miao$$2Crossref$$9-- missing cx lookup --$$a10.3892/ol.2015.3872$$p134 -$$tOncol Lett$$uMiao F, Zhu J, Chen Y, Tang N, Wang X, Li X (2016) MicroRNA-183-5p promotes the proliferation, invasion and metastasis of human pancreatic adenocarcinoma cells. Oncol Lett 11:134–140. https://doi.org/10.3892/ol.2015.3872$$v11$$y2016
000157750 999C5 $$1MA Mittelbronn$$2Crossref$$9-- missing cx lookup --$$a10.1046/j.1365-4362.1998.00467.x$$p677 -$$tInt J Dermatol$$uMittelbronn MA, Mullins DL, Ramos-Caro FA, Flowers FP (1998) Frequency of pre-existing actinic keratosis in cutaneous squamous cell carcinoma. Int J Dermatol 37:677–681$$v37$$y1998
000157750 999C5 $$1N Nouraee$$2Crossref$$9-- missing cx lookup --$$a10.2174/22115366113029990015$$p102 -$$tMicrorna$$uNouraee N, Calin GA (2013) MicroRNAs as cancer biomarkers. Microrna 2:102–117$$v2$$y2013
000157750 999C5 $$1D Ogata$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11864-019-0629-2$$p30 -$$tCurr Treat Options Oncol$$uOgata D, Tsuchida T (2019) Systemic immunotherapy for advanced cutaneous squamous cell carcinoma. Curr Treat Options Oncol 20:30. https://doi.org/10.1007/s11864-019-0629-2$$v20$$y2019
000157750 999C5 $$1H Okuda$$2Crossref$$9-- missing cx lookup --$$a10.1158/0008-5472.CAN-12-2037$$p1434 -$$tCancer Res$$uOkuda H et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73:1434–1444. https://doi.org/10.1158/0008-5472.CAN-12-2037$$v73$$y2013
000157750 999C5 $$1S Oliveto$$2Crossref$$9-- missing cx lookup --$$a10.4331/wjbc.v8.i1.45$$p45 -$$tWorld J Biol Chem$$uOliveto S, Mancino M, Manfrini N, Biffo S (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8:45–56. https://doi.org/10.4331/wjbc.v8.i1.45$$v8$$y2017
000157750 999C5 $$1SR Pfeffer$$2Crossref$$9-- missing cx lookup --$$a10.3390/jcm4121957$$p2012 -$$tJ Clin Med$$uPfeffer SR et al (2015) Detection of exosomal miRNAs in the plasma of melanoma patients. J Clin Med 4:2012–2027. https://doi.org/10.3390/jcm4121957$$v4$$y2015
000157750 999C5 $$1CR Pickering$$2Crossref$$9-- missing cx lookup --$$a10.1158/1078-0432.CCR-14-1768$$p6582 -$$tClin Cancer Res$$uPickering CR et al (2014) Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res 20:6582–6592. https://doi.org/10.1158/1078-0432.CCR-14-1768$$v20$$y2014
000157750 999C5 $$1S Popp$$2Crossref$$9-- missing cx lookup --$$a10.1046/j.1523-1747.2000.00173.x$$p1095 -$$tJ Invest Dermatol$$uPopp S, Waltering S, Holtgreve-Grez H, Jauch A, Proby C, Leigh IM, Boukamp P (2000) Genetic characterization of a human skin carcinoma progression model: from primary tumor to metastasis. J Invest Dermatol 115:1095–1103. https://doi.org/10.1046/j.1523-1747.2000.00173.x$$v115$$y2000
000157750 999C5 $$1J Pothof$$2Crossref$$9-- missing cx lookup --$$a10.1038/emboj.2009.156$$p2090 -$$tEmbo J$$uPothof J et al (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. Embo J 28:2090–2099. https://doi.org/10.1038/emboj.2009.156$$v28$$y2009
000157750 999C5 $$1CM Proby$$2Crossref$$9-- missing cx lookup --$$a10.1034/j.1600-0625.2000.009002104.x$$p104 -$$tExp Dermatol$$uProby CM, Purdie KJ, Sexton CJ, Purkis P, Navsaria HA, Stables JN, Leigh IM (2000) Spontaneous keratinocyte cell lines representing early and advanced stages of malignant transformation of the epidermis. Exp Dermatol 9:104–117$$v9$$y2000
000157750 999C5 $$1C Qiu$$2Crossref$$9-- missing cx lookup --$$a10.1038/srep00318$$p318 -$$tSci Rep$$uQiu C, Chen G, Cui Q (2012) Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases. Sci Rep 2:318. https://doi.org/10.1038/srep00318$$v2$$y2012
000157750 999C5 $$1N Ratert$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0039309$$pe39309 -$$tPLoS ONE$$uRatert N et al (2012) Reference miRNAs for miRNAome analysis of urothelial carcinomas. PLoS ONE 7:e39309. https://doi.org/10.1371/journal.pone.0039309$$v7$$y2012
000157750 999C5 $$1V Ratushny$$2Crossref$$9-- missing cx lookup --$$a10.1172/JCI57415$$p464 -$$tJ Clin Invest$$uRatushny V, Gober MD, Hick R, Ridky TW, Seykora JT (2012) From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest 122:464–472. https://doi.org/10.1172/JCI57415$$v122$$y2012
000157750 999C5 $$1LH Ren$$2Crossref$$9-- missing cx lookup --$$a10.1038/bjc.2014.485$$p2003 -$$tBr J Cancer$$uRen LH et al (2014) MicroRNA-183 promotes proliferation and invasion in oesophageal squamous cell carcinoma by targeting programmed cell death 4. Br J Cancer 111:2003–2013. https://doi.org/10.1038/bjc.2014.485$$v111$$y2014
000157750 999C5 $$1P Ru$$2Crossref$$9-- missing cx lookup --$$a10.1158/1535-7163.MCT-12-0100$$p1166 -$$tMol Cancer Ther$$uRu P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB (2012) miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther 11:1166–1173. https://doi.org/10.1158/1535-7163.MCT-12-0100$$v11$$y2012
000157750 999C5 $$1H Ruan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.biopha.2017.02.091$$p812 -$$tBiomed Pharmacother$$uRuan H, Liang X, Zhao W, Ma L, Zhao Y (2017) The effects of microRNA-183 promots cell proliferation and invasion by targeting MMP-9 in endometrial cancer. Biomed Pharmacother 89:812–818. https://doi.org/10.1016/j.biopha.2017.02.091$$v89$$y2017
000157750 999C5 $$1M Sand$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1365-2133.2012.11022.x$$p847 -$$tBr J Dermatol$$uSand M et al (2012) Expression of microRNAs in basal cell carcinoma. Br J Dermatol 167:847–855. https://doi.org/10.1111/j.1365-2133.2012.11022.x$$v167$$y2012
000157750 999C5 $$1AL Sarver$$2Crossref$$9-- missing cx lookup --$$a10.1158/0008-5472.CAN-10-2074$$p9570 -$$tCancer Res$$uSarver AL, Li L, Subramanian S (2010) MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 70:9570–9580. https://doi.org/10.1158/0008-5472.CAN-10-2074$$v70$$y2010
000157750 999C5 $$1J Schmitt$$2Crossref$$9-- missing cx lookup --$$a10.1111/bjd.15906$$p462 -$$tBr J Dermatol$$uSchmitt J et al (2018) Is ultraviolet exposure acquired at work the most important risk factor for cutaneous squamous cell carcinoma? Results of the population-based case-control study FB-181. Br J Dermatol 178:462–472. https://doi.org/10.1111/bjd.15906$$v178$$y2018
000157750 999C5 $$1J Sha$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0154915$$pe0154915 -$$tPLoS ONE$$uSha J et al (2016) The Response of microRNAs to Solar UVR in skin-resident melanocytes differs between melanoma patients and healthy persons. PLoS ONE 11:e0154915. https://doi.org/10.1371/journal.pone.0154915$$v11$$y2016
000157750 999C5 $$1O Stojadinovic$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00403-016-1705-0$$p133 -$$tArch Dermatol Res$$uStojadinovic O et al (2017) MiR-21 and miR-205 are induced in invasive cutaneous squamous cell carcinomas. Arch Dermatol Res 309:133–139. https://doi.org/10.1007/s00403-016-1705-0$$v309$$y2017
000157750 999C5 $$1G Tan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbrc.2011.11.160$$p546 -$$tBiochem Biophys Res Commun$$uTan G, Shi Y, Wu ZH (2012) MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN. Biochem Biophys Res Commun 417:546–551. https://doi.org/10.1016/j.bbrc.2011.11.160$$v417$$y2012
000157750 999C5 $$1L Tengda$$2Crossref$$9-- missing cx lookup --$$a10.1097/CMR.0000000000000450$$tMelanoma Res$$uTengda L, Shuping L, Mingli G, Jie G, Yun L, Weiwei Z, Anmei D (2018) Serum exosomal microRNAs as potent circulating biomarkers for melanoma. Melanoma Res. https://doi.org/10.1097/CMR.0000000000000450$$y2018
000157750 999C5 $$1K Ueno$$2Crossref$$9-- missing cx lookup --$$a10.1038/bjc.2013.125$$p1659 -$$tBr J Cancer$$uUeno K et al (2013) microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer 108:1659–1667. https://doi.org/10.1038/bjc.2013.125$$v108$$y2013
000157750 999C5 $$1J Vandesompele$$2Crossref$$9-- missing cx lookup --$$a10.1186/gb-2002-3-7-research0034$$pRESEARCH0034 -$$tGenome Biol$$uVandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. https://doi.org/10.1186/gb-2002-3-7-research0034$$v3$$y2002
000157750 999C5 $$1S Veerla$$2Crossref$$9-- missing cx lookup --$$a10.1002/ijc.24183$$p2236 -$$tInt J Cancer$$uVeerla S et al (2009) MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 124:2236–2242. https://doi.org/10.1002/ijc.24183$$v124$$y2009
000157750 999C5 $$1V Voiculescu$$2Crossref$$9-- missing cx lookup --$$a10.1155/2016/4517492$$p4517492 -$$tDis Markers$$uVoiculescu V et al (2016) From normal skin to squamous cell carcinoma: a quest for novel biomarkers. Dis Markers 2016:4517492. https://doi.org/10.1155/2016/4517492$$v2016$$y2016
000157750 999C5 $$1L Wang$$2Crossref$$9-- missing cx lookup --$$a10.1208/s12248-014-9666-8$$p1214 -$$tAAPS J$$uWang L, Zhang C, Guo Y, Su ZY, Yang Y, Shu L, Kong AN (2014) Blocking of JB6 cell transformation by tanshinone IIA: epigenetic reactivation of Nrf2 antioxidative stress pathway. AAPS J 16:1214–1225. https://doi.org/10.1208/s12248-014-9666-8$$v16$$y2014
000157750 999C5 $$1X Wang$$2Crossref$$9-- missing cx lookup --$$a10.18632/oncotarget.21246$$p86592 -$$tOncotarget$$uWang X et al (2017) miR-29a-3p suppresses cell proliferation and migration by downregulating IGF1R in hepatocellular carcinoma. Oncotarget 8:86592–86603. https://doi.org/10.18632/oncotarget.21246$$v8$$y2017
000157750 999C5 $$1RJ Webster$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M804280200$$p5731 -$$tJ Biol Chem$$uWebster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284:5731–5741. https://doi.org/10.1074/jbc.M804280200$$v284$$y2009
000157750 999C5 $$1DG Wu$$2Crossref$$uWu DG et al (2011) MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chin Med J (Engl) 124:2616–2621$$y2011
000157750 999C5 $$1Q Wu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cca.2012.02.016$$p1058 -$$tClin Chim Acta$$uWu Q, Wang C, Lu Z, Guo L, Ge Q (2012) Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta 413:1058–1065. https://doi.org/10.1016/j.cca.2012.02.016$$v413$$y2012
000157750 999C5 $$1S Wu$$2Crossref$$9-- missing cx lookup --$$a10.1158/1055-9965.EPI-13-0821$$p1080 -$$tCancer Epidemiol Biomarkers Prev$$uWu S, Han J, Laden F, Qureshi AA (2014a) Long-term ultraviolet flux, other potential risk factors, and skin cancer risk: a cohort study. Cancer Epidemiol Biomarkers Prev 23:1080–1089. https://doi.org/10.1158/1055-9965.EPI-13-0821$$v23$$y2014
000157750 999C5 $$1S Wu$$2Crossref$$9-- missing cx lookup --$$a10.1038/bjc.2014.43$$p1855 -$$tBr J Cancer$$uWu S, Han J, Vleugels RA, Puett R, Laden F, Hunter DJ, Qureshi AA (2014b) Cumulative ultraviolet radiation flux in adulthood and risk of incident skin cancers in women. Br J Cancer 110:1855–1861. https://doi.org/10.1038/bjc.2014.43$$v110$$y2014
000157750 999C5 $$1Y Wu$$2Crossref$$9-- missing cx lookup --$$a10.1039/c5an00688k$$p6631 -$$tAnalyst$$uWu Y, Deng W, Klinke DJ 2nd (2015) Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140:6631–6642. https://doi.org/10.1039/c5an00688k$$v140$$y2015
000157750 999C5 $$1F Xiang$$2Crossref$$9-- missing cx lookup --$$a10.1001/jamadermatol.2014.762$$p1063 -$$tJAMA Dermatol$$uXiang F, Lucas R, Hales S, Neale R (2014) Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978–2012: empirical relationships. JAMA Dermatol 150:1063–1071. https://doi.org/10.1001/jamadermatol.2014.762$$v150$$y2014
000157750 999C5 $$1D Xiao$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.canlet.2016.03.050$$p318 -$$tCancer Lett$$uXiao D et al (2016) Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett 376:318–327. https://doi.org/10.1016/j.canlet.2016.03.050$$v376$$y2016
000157750 999C5 $$1J Xie$$2Crossref$$9-- missing cx lookup --$$a10.3892/or.2014.3052$$p1715 -$$tOncol Rep$$uXie J et al (2014) miR-7 inhibits the invasion and metastasis of gastric cancer cells by suppressing epidermal growth factor receptor expression. Oncol Rep 31:1715–1722. https://doi.org/10.3892/or.2014.3052$$v31$$y2014
000157750 999C5 $$1H Xu$$2Crossref$$9-- missing cx lookup --$$a10.1158/0008-5472.CAN-08-4517$$p6275 -$$tCancer Res$$uXu H, Cheung IY, Guo HF, Cheung NK (2009) MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7–H3: potential implications for immune based therapy of human solid tumors. Cancer Res 69:6275–6281. https://doi.org/10.1158/0008-5472.CAN-08-4517$$v69$$y2009
000157750 999C5 $$1D Yan$$2Crossref$$9-- missing cx lookup --$$a10.3727/096504016X14685034103239$$p399 -$$tOncol Res$$uYan D, Cai X, Feng Y (2016) miR-183 modulates cell apoptosis and proliferation in tongue squamous cell carcinoma SCC25 cell line. Oncol Res 24:399–404. https://doi.org/10.3727/096504016X14685034103239$$v24$$y2016
000157750 999C5 $$1N Yanaihara$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ccr.2006.01.025$$p189 -$$tCancer Cell$$uYanaihara N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198. https://doi.org/10.1016/j.ccr.2006.01.025$$v9$$y2006
000157750 999C5 $$1F Yang$$2Crossref$$9-- missing cx lookup --$$a10.1186/s12943-017-0718-4$$p148 -$$tMol Cancer$$uYang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, Shen H (2017) Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer 16:148. https://doi.org/10.1186/s12943-017-0718-4$$v16$$y2017
000157750 999C5 $$1M Yang$$2Crossref$$9-- missing cx lookup --$$a10.14348/molcells.2014.0147$$p873 -$$tMol Cells$$uYang M et al (2014) miRNA-183 suppresses apoptosis and promotes proliferation in esophageal cancer by targeting PDCD4. Mol Cells 37:873–880. https://doi.org/10.14348/molcells.2014.0147$$v37$$y2014
000157750 999C5 $$1X Yang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbrc.2018.01.170$$p1197 -$$tBiochem Biophys Res Commun$$uYang X, Wang L, Wang Q, Li L, Fu Y, Sun J (2018) MiR-183 inhibits osteosarcoma cell growth and invasion by regulating LRP6-Wnt/beta-catenin signaling pathway. Biochem Biophys Res Commun 496:1197–1203. https://doi.org/10.1016/j.bbrc.2018.01.170$$v496$$y2018
000157750 999C5 $$1VR Yanofsky$$2Crossref$$9-- missing cx lookup --$$a10.1155/2011/210813$$p210813 -$$tJ Skin Cancer$$uYanofsky VR, Mercer SE, Phelps RG (2011) Histopathological variants of cutaneous squamous cell carcinoma: a review. J Skin Cancer 2011:210813. https://doi.org/10.1155/2011/210813$$v2011$$y2011
000157750 999C5 $$1X Yu$$2Crossref$$9-- missing cx lookup --$$a10.1111/jcmm.12649$$p3 -$$tJ Cell Mol Med$$uYu X, Li Z (2016) The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med 20:3–9. https://doi.org/10.1111/jcmm.12649$$v20$$y2016
000157750 999C5 $$1Z Yu$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10735-013-9516-5$$p669 -$$tJ Mol Histol$$uYu Z et al (2013) Identification of miR-7 as an oncogene in renal cell carcinoma. J Mol Histol 44:669–677. https://doi.org/10.1007/s10735-013-9516-5$$v44$$y2013
000157750 999C5 $$1J Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.gpb.2015.02.001$$p17 -$$tGenomics Proteomics Bioinformatics$$uZhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015a) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24. https://doi.org/10.1016/j.gpb.2015.02.001$$v13$$y2015
000157750 999C5 $$1L Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature15376$$p100 -$$tNature$$uZhang L et al (2015b) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100–104. https://doi.org/10.1038/nature15376$$v527$$y2015
000157750 999C5 $$1B Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1002/jbt.21451$$p184 -$$tJ Biochem Mol Toxicol$$uZhao B, Ming M, He YY (2013) Suppression of PTEN transcription by UVA. J Biochem Mol Toxicol 27:184–191. https://doi.org/10.1002/jbt.21451$$v27$$y2013
000157750 999C5 $$1BR Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1600-0625.2012.01465.x$$p317 -$$tExp Dermatol$$uZhou BR et al (2012) Characterization of the miRNA profile in UVB-irradiated normal human keratinocytes. Exp Dermatol 21:317–319. https://doi.org/10.1111/j.1600-0625.2012.01465.x$$v21$$y2012
000157750 999C5 $$1X Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0096718$$pe96718 -$$tPLoS ONE$$uZhou X et al (2014) MicroRNA-7 inhibits tumor metastasis and reverses epithelial-mesenchymal transition through AKT/ERK1/2 inactivation by targeting EGFR in epithelial ovarian cancer. PLoS ONE 9:e96718. https://doi.org/10.1371/journal.pone.0096718$$v9$$y2014