001     157750
005     20240229123143.0
024 7 _ |a 10.1007/s00432-020-03358-9
|2 doi
024 7 _ |a pmid:32865618
|2 pmid
024 7 _ |a 0084-5353
|2 ISSN
024 7 _ |a 0171-5216
|2 ISSN
024 7 _ |a 0943-9382
|2 ISSN
024 7 _ |a 1432-1335
|2 ISSN
024 7 _ |a altmetric:89245662
|2 altmetric
037 _ _ |a DKFZ-2020-01787
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Chen, I-Peng
|b 0
245 _ _ |a UV-type specific alteration of miRNA expression and its association with tumor progression and metastasis in SCC cell lines.
260 _ _ |a Berlin
|c 2020
|b Springer42162
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2020-08-31
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2020-12-01
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2020-12-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606232256_10650
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Dec;146(12):3215-3231
520 _ _ |a UV exposure is the main risk factor for development of cutaneous squamous cell carcinoma (cSCC). While early detection greatly improves cSCC prognosis, locally advanced or metastatic cSCC has a severely impaired prognosis. Notably, the mechanisms of progression to metastatic cSCC are not well understood. We hypothesized that UV exposure of already transformed epithelial cSCC cells further induces changes which might be involved in the progression to metastatic cSCCs and that UV-inducible microRNAs (miRNAs) might play an important role.Thus, we analyzed the impact of UV radiation of different quality (UVA, UVB, UVA + UVB) on the miRNA expression pattern in established cell lines generated from primary and metastatic cSCCs (Met-1, Met-4) using the NanoString nCounter platform.This analysis revealed that the expression pattern of miRNAs depends on both the cell line used per se and on the quality of UV radiation. Comparison of UV-induced miRNAs in cSCC cell lines established from a primary tumor (Met-1) and the respective (un-irradiated) metastasis (Met-4) suggest that miR-7-5p, miR-29a-3p and miR-183-5p are involved in a UV-driven pathway of progression to metastasis. This notion is supported by the fact that these three miRNAs build up a network of 81 potential target genes involved e.g. in UVA/UVB-induced MAPK signaling and regulation of the epithelial-mesenchymal transition. As an example, PTEN, a target of UV-upregulated miRNAs (miR-29a-3p, miR-183-5p), could be shown to be down-regulated in response to UV radiation. We further identified CNOT8, the transcription complex subunit 8 of the CCR4-NOT complex, a deadenylase removing the poly(A) tail from miRNA-destabilized mRNAs, in the center of this network, targeted by all three miRNAs.In summary, our results demonstrate that UV radiation induces an miRNA expression pattern in primary SCC cell line partly resembling those of metastatic cell line, thus suggesting that UV radiation impacts SCC progression beyond initiation.
536 _ _ |a 311 - Signalling pathways, cell and tumor biology (POF3-311)
|0 G:(DE-HGF)POF3-311
|c POF3-311
|f POF III
|x 0
542 _ _ |i 2020-08-31
|2 Crossref
|u https://www.springer.com/tdm
542 _ _ |i 2020-08-31
|2 Crossref
|u https://www.springer.com/tdm
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Bender, Marc
|b 1
700 1 _ |a Spassova, Ivelina
|0 P:(DE-He78)451b11372e417a54000de500b90b7faa
|b 2
|u dkfz
700 1 _ |a Henning, Stefan
|b 3
700 1 _ |a Kubat, Linda
|0 P:(DE-He78)ddba8c79115a5d116dfaa636aaf3f126
|b 4
|u dkfz
700 1 _ |a Fan, Kaiji
|0 P:(DE-He78)3b5e56207f4d531fba922d7cca79f39a
|b 5
|u dkfz
700 1 _ |a Degenhardt, Sarah
|b 6
700 1 _ |a Mhamdi-Ghodbani, Mouna
|b 7
700 1 _ |a Sriram, Ashwin
|0 P:(DE-He78)67371e467c2ee0e553f459c775360f6c
|b 8
|u dkfz
700 1 _ |a Volkmer, Beate
|b 9
700 1 _ |a Boukamp, Petra
|0 P:(DE-He78)c1895aa471c7ac9c7173045464b69b31
|b 10
|u dkfz
700 1 _ |a Becker, Jürgen C
|0 P:(DE-He78)7bf2f090fe39a6cd6f0bccf5ea2d4fb3
|b 11
|u dkfz
700 1 _ |a Greinert, Rüdiger
|0 0000-0003-3479-9968
|b 12
773 1 8 |a 10.1007/s00432-020-03358-9
|b Springer Science and Business Media LLC
|d 2020-08-31
|n 12
|p 3215-3231
|3 journal-article
|2 Crossref
|t Journal of Cancer Research and Clinical Oncology
|v 146
|y 2020
|x 0171-5216
773 _ _ |a 10.1007/s00432-020-03358-9
|0 PERI:(DE-600)1459285-X
|n 12
|p 3215-3231
|t Journal of cancer research and clinical oncology
|v 146
|y 2020
|x 0171-5216
909 C O |o oai:inrepo02.dkfz.de:157750
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)451b11372e417a54000de500b90b7faa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)ddba8c79115a5d116dfaa636aaf3f126
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)3b5e56207f4d531fba922d7cca79f39a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)67371e467c2ee0e553f459c775360f6c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)c1895aa471c7ac9c7173045464b69b31
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)7bf2f090fe39a6cd6f0bccf5ea2d4fb3
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|2 G:(DE-HGF)POF3-300
|v Signalling pathways, cell and tumor biology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CANCER RES CLIN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)ED01-20160331
|k ED01
|l DKTK ED ES zentral
|x 0
920 1 _ |0 I:(DE-He78)A110-20160331
|k A110
|l A110 Genetik der Hautcarcinogene
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)ED01-20160331
980 _ _ |a I:(DE-He78)A110-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1016/j.cub.2014.06.043
|9 -- missing cx lookup --
|1 BD Adams
|p R762 -
|2 Crossref
|u Adams BD, Kasinski AL, Slack FJ (2014) Aberrant regulation and function of microRNAs in cancer. Curr Biol 24:R762–776. https://doi.org/10.1016/j.cub.2014.06.043
|t Curr Biol
|v 24
|y 2014
999 C 5 |a 10.1111/j.1540-9740.2004.02450.x
|9 -- missing cx lookup --
|1 M Almahroos
|p 132 -
|2 Crossref
|u Almahroos M, Kurban AK (2004a) Ultraviolet carcinogenesis in nonmelanoma skin cancer part II: review and update on epidemiologic correlations. Skinmed 3:132–139
|t Skinmed
|v 3
|y 2004
999 C 5 |a 10.1111/j.1540-9740.2004.02331.x
|9 -- missing cx lookup --
|1 M Almahroos
|p 29 -
|2 Crossref
|u Almahroos M, Kurban AK (2004b) Ultraviolet carcinogenesis in nonmelanoma skin cancer. Part I: incidence rates in relation to geographic locations and in migrant populations. Skinmed 3:29–35 (quiz 35-26)
|t Skinmed
|v 3
|y 2004
999 C 5 |a 10.1038/s41571-018-0035-x
|1 S Anfossi
|9 -- missing cx lookup --
|2 Crossref
|u Anfossi S, Babayan A, Pantel K, Calin GA (2018) Clinical utility of circulating non-coding RNAs—an update. Nat Rev Clin Oncol. https://doi.org/10.1038/s41571-018-0035-x
|t Nat Rev Clin Oncol
|y 2018
999 C 5 |a 10.1016/S1011-1344(01)00198-1
|9 -- missing cx lookup --
|1 BK Armstrong
|p 8 -
|2 Crossref
|u Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63:8–18
|t J Photochem Photobiol B
|v 63
|y 2001
999 C 5 |a 10.1038/nrc1997
|9 -- missing cx lookup --
|1 GA Calin
|p 857 -
|2 Crossref
|u Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866. https://doi.org/10.1038/nrc1997
|t Nat Rev Cancer
|v 6
|y 2006
999 C 5 |a 10.3892/mmr.2014.2418
|9 -- missing cx lookup --
|1 HJ Cha
|p 1663 -
|2 Crossref
|u Cha HJ et al (2014) Identification of ultraviolet B radiationinduced microRNAs in normal human dermal papilla cells. Mol Med Rep 10:1663–1670. https://doi.org/10.3892/mmr.2014.2418
|t Mol Med Rep
|v 10
|y 2014
999 C 5 |a 10.1016/j.brainres.2012.03.017
|9 -- missing cx lookup --
|1 M Chakrabarti
|p 1 -
|2 Crossref
|u Chakrabarti M, Khandkar M, Banik NL, Ray SK (2012) Alterations in expression of specific microRNAs by combination of 4-HPR and EGCG inhibited growth of human malignant neuroblastoma cells. Brain Res 1454:1–13. https://doi.org/10.1016/j.brainres.2012.03.017
|t Brain Res
|v 1454
|y 2012
999 C 5 |a 10.2174/156802612800166747
|9 -- missing cx lookup --
|1 LW Chan
|p 920 -
|2 Crossref
|u Chan LW, Wang FF, Cho WC (2012) Genomic sequence analysis of EGFR regulation by microRNAs in lung cancer. Curr Top Med Chem 12:920–926
|t Curr Top Med Chem
|v 12
|y 2012
999 C 5 |a 10.1002/jbt.20412
|9 -- missing cx lookup --
|1 F Chen
|p 79 -
|2 Crossref
|u Chen F, Hu SJ (2012) Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: a review. J Biochem Mol Toxicol 26:79–86. https://doi.org/10.1002/jbt.20412
|t J Biochem Mol Toxicol
|v 26
|y 2012
999 C 5 |a 10.1016/j.celrep.2013.08.050
|9 -- missing cx lookup --
|1 J Cheng
|p 471 -
|2 Crossref
|u Cheng J et al (2013) An extensive network of TET2-targeting MicroRNAs regulates malignant hematopoiesis. Cell Rep 5:471–481. https://doi.org/10.1016/j.celrep.2013.08.050
|t Cell Rep
|v 5
|y 2013
999 C 5 |a 10.1016/j.cancergen.2015.04.004
|9 -- missing cx lookup --
|1 CM Coutinho-Camillo
|p 382 -
|2 Crossref
|u Coutinho-Camillo CM, Lourenco SV, de Araujo LL, Kowalski LP, Soares FA (2015) Expression of apoptosis-regulating miRNAs and target mRNAs in oral squamous cell carcinoma. Cancer Genet 208:382–389. https://doi.org/10.1016/j.cancergen.2015.04.004
|t Cancer Genet
|v 208
|y 2015
999 C 5 |a 10.1016/j.ccr.2011.10.014
|9 -- missing cx lookup --
|1 C Darido
|p 635 -
|2 Crossref
|u Darido C et al (2011) Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 20:635–648. https://doi.org/10.1016/j.ccr.2011.10.014
|t Cancer Cell
|v 20
|y 2011
999 C 5 |a 10.1038/ncomms12626
|9 -- missing cx lookup --
|1 H Du
|p 12626 -
|2 Crossref
|u Du H et al (2016) YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 7:12626. https://doi.org/10.1038/ncomms12626
|t Nat Commun
|v 7
|y 2016
999 C 5 |a 10.1073/pnas.0707628104
|9 -- missing cx lookup --
|1 M Fabbri
|p 15805 -
|2 Crossref
|u Fabbri M et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810. https://doi.org/10.1073/pnas.0707628104
|t Proc Natl Acad Sci U S A
|v 104
|y 2007
999 C 5 |a 10.1146/annurev-biochem-060308-103103
|9 -- missing cx lookup --
|1 MR Fabian
|p 351 -
|2 Crossref
|u Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. https://doi.org/10.1146/annurev-biochem-060308-103103
|t Annu Rev Biochem
|v 79
|y 2010
999 C 5 |a 10.1158/1078-0432.CCR-18-1184
|9 -- missing cx lookup --
|1 K Fan
|p 5873 -
|2 Crossref
|u Fan K et al (2018) Circulating cell-free miR-375 as surrogate marker of tumor burden in merkel cell carcinoma. Clin Cancer Res 24:5873–5882. https://doi.org/10.1158/1078-0432.CCR-18-1184
|t Clin Cancer Res
|v 24
|y 2018
999 C 5 |a 10.1007/s00277-011-1350-9
|9 -- missing cx lookup --
|1 C Fang
|p 553 -
|2 Crossref
|u Fang C et al (2012) Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann Hematol 91:553–559. https://doi.org/10.1007/s00277-011-1350-9
|t Ann Hematol
|v 91
|y 2012
999 C 5 |a 10.3892/ol.2018.7967
|9 -- missing cx lookup --
|1 JM Gao
|p 5056 -
|2 Crossref
|u Gao JM, Huang LZ, Huang ZG, He RQ (2018) Clinical value and potential pathways of miR-183-5p in bladder cancer: a study based on miRNA-seq data and bioinformatics analysis. Oncol Lett 15:5056–5070. https://doi.org/10.3892/ol.2018.7967
|t Oncol Lett
|v 15
|y 2018
999 C 5 |a 10.3390/ijms20092181
|9 -- missing cx lookup --
|1 N Garcia-Sancha
|p 2181 -
|2 Crossref
|u Garcia-Sancha N, Corchado-Cobos R, Perez-Losada J, Canueto J (2019) MicroRNA dysregulation in cutaneous squamous cell carcinoma. Int J Mol Sci 20:2181. https://doi.org/10.3390/ijms20092181
|t Int J Mol Sci
|v 20
|y 2019
999 C 5 |a 10.1073/pnas.0800135105
|9 -- missing cx lookup --
|1 R Garzon
|p 3945 -
|2 Crossref
|u Garzon R et al (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 105:3945–3950. https://doi.org/10.1073/pnas.0800135105
|t Proc Natl Acad Sci U S A
|v 105
|y 2008
999 C 5 |a 10.18632/oncotarget.9421
|9 -- missing cx lookup --
|1 KM Giles
|p 31663 -
|2 Crossref
|u Giles KM et al (2016) microRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-kappaB. Oncotarget 7:31663–31680. https://doi.org/10.18632/oncotarget.9421
|t Oncotarget
|v 7
|y 2016
999 C 5 |a 10.1067/mjd.2000.103339
|9 -- missing cx lookup --
|1 RG Glogau
|p 23 -
|2 Crossref
|u Glogau RG (2000) The risk of progression to invasive disease. J Am Acad Dermatol 42:23–24. https://doi.org/10.1067/mjd.2000.103339
|t J Am Acad Dermatol
|v 42
|y 2000
999 C 5 |a 10.1186/1471-2164-14-224
|9 -- missing cx lookup --
|1 R Greussing
|p 224 -
|2 Crossref
|u Greussing R et al (2013) Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts. BMC Genomics 14:224. https://doi.org/10.1186/1471-2164-14-224
|t BMC Genomics
|v 14
|y 2013
999 C 5 |a 10.1093/bioinformatics/btw313
|9 -- missing cx lookup --
|1 Z Gu
|p 2847 -
|2 Crossref
|u Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. https://doi.org/10.1093/bioinformatics/btw313
|t Bioinformatics
|v 32
|y 2016
999 C 5 |a 10.5582/bst.2016.01102
|9 -- missing cx lookup --
|1 M Harada
|p 454 -
|2 Crossref
|u Harada M et al (2017) The expression of miR-124 increases in aged skin to cause cell senescence and it decreases in squamous cell carcinoma. Biosci Trends 10:454–459. https://doi.org/10.5582/bst.2016.01102
|t Biosci Trends
|v 10
|y 2017
999 C 5 |a 10.1007/s00345-010-0633-4
|9 -- missing cx lookup --
|1 J Heinzelmann
|p 367 -
|2 Crossref
|u Heinzelmann J et al (2011) Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol 29:367–373. https://doi.org/10.1007/s00345-010-0633-4
|t World J Urol
|v 29
|y 2011
999 C 5 |a 10.1016/j.ejca.2012.01.003
|9 -- missing cx lookup --
|1 LM Hollestein
|p 2046 -
|2 Crossref
|u Hollestein LM, de Vries E, Nijsten T (2012) Trends of cutaneous squamous cell carcinoma in the Netherlands: increased incidence rates, but stable relative survival and mortality 1989–2008. Eur J Cancer 48:2046–2053. https://doi.org/10.1016/j.ejca.2012.01.003
|t Eur J Cancer
|v 48
|y 2012
999 C 5 |a 10.1158/1541-7786.MCR-11-0035
|9 -- missing cx lookup --
|1 Y Ikeda
|p 259 -
|2 Crossref
|u Ikeda Y, Tanji E, Makino N, Kawata S, Furukawa T (2012) MicroRNAs associated with mitogen-activated protein kinase in human pancreatic cancer. Mol Cancer Res 10:259–269. https://doi.org/10.1158/1541-7786.MCR-11-0035
|t Mol Cancer Res
|v 10
|y 2012
999 C 5 |a 10.1371/journal.pone.0185794
|9 -- missing cx lookup --
|1 MVC Issler
|p e0185794 -
|2 Crossref
|u Issler MVC, Mombach JCM (2017) MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS ONE 12:e0185794. https://doi.org/10.1371/journal.pone.0185794
|t PLoS ONE
|v 12
|y 2017
999 C 5 |a 10.1186/1471-2105-15-S2-S2
|9 -- missing cx lookup --
|1 PA Jaskowiak
|p S2 -
|2 Crossref
|u Jaskowiak PA, Campello RJ, Costa IG (2014) On the selection of appropriate distances for gene expression data clustering. BMC Bioinformatics 15(Suppl 2):S2. https://doi.org/10.1186/1471-2105-15-S2-S2
|t BMC Bioinformatics
|v 15
|y 2014
999 C 5 |a 10.1042/BJ20100859
|9 -- missing cx lookup --
|1 L Jiang
|p 199 -
|2 Crossref
|u Jiang L et al (2010) MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 432:199–205. https://doi.org/10.1042/BJ20100859
|t Biochem J
|v 432
|y 2010
999 C 5 |a 10.1074/jbc.M112.366518
|9 -- missing cx lookup --
|1 HM Jung
|p 29261 -
|2 Crossref
|u Jung HM et al (2012) Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer. J Biol Chem 287:29261–29272. https://doi.org/10.1074/jbc.M112.366518
|t J Biol Chem
|v 287
|y 2012
999 C 5 |a 10.1371/journal.pone.0041523
|9 -- missing cx lookup --
|1 X Kong
|p e41523 -
|2 Crossref
|u Kong X et al (2012) MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via targeting FAK expression. PLoS ONE 7:e41523. https://doi.org/10.1371/journal.pone.0041523
|t PLoS ONE
|v 7
|y 2012
999 C 5 |a 10.1371/journal.pone.0083392
|9 -- missing cx lookup --
|1 A Kraemer
|p e83392 -
|2 Crossref
|u Kraemer A et al (2013) UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes. PLoS ONE 8:e83392. https://doi.org/10.1371/journal.pone.0083392
|t PLoS ONE
|v 8
|y 2013
999 C 5 |a 10.1016/j.omto.2018.12.011
|9 -- missing cx lookup --
|1 JJ Kwon
|p 173 -
|2 Crossref
|u Kwon JJ, Factora TD, Dey S, Kota J (2019) A Systematic review of miR-29 in cancer. Mol Ther Oncolytics 12:173–194. https://doi.org/10.1016/j.omto.2018.12.011
|t Mol Ther Oncolytics
|v 12
|y 2019
999 C 5 |a 10.1155/2015/125094
|9 -- missing cx lookup --
|1 H Lan
|p 125094 -
|2 Crossref
|u Lan H, Lu H, Wang X, Jin H (2015) MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed Res Int 2015:125094. https://doi.org/10.1155/2015/125094
|t Biomed Res Int
|v 2015
|y 2015
999 C 5 |a 10.1007/s12094-016-1516-y
|9 -- missing cx lookup --
|1 CY Li
|p 162 -
|2 Crossref
|u Li CY et al (2017) Identification and functional characterization of microRNAs reveal a potential role in gastric cancer progression. Clin Transl Oncol 19:162–172. https://doi.org/10.1007/s12094-016-1516-y
|t Clin Transl Oncol
|v 19
|y 2017
999 C 5 |a 10.14348/molcells.2018.2200
|9 -- missing cx lookup --
|1 G Li
|p 523 -
|2 Crossref
|u Li G, Li L, Sun Q, Wu J, Ge W, Lu G, Cai M (2018a) MicroRNA-3200-5p promotes osteosarcoma cell invasion via suppression of BRMS1. Mol Cells 41:523–531. https://doi.org/10.14348/molcells.2018.2200
|t Mol Cells
|v 41
|y 2018
999 C 5 |a 10.1186/s13046-018-0898-9
|9 -- missing cx lookup --
|1 W Li
|p 223 -
|2 Crossref
|u Li W, Zhang T, Guo L, Huang L (2018b) Regulation of PTEN expression by noncoding RNAs. J Exp Clin Cancer Res 37:223. https://doi.org/10.1186/s13046-018-0898-9
|t J Exp Clin Cancer Res
|v 37
|y 2018
999 C 5 |a 10.1007/s10620-013-2929-x
|9 -- missing cx lookup --
|1 Y Li
|p 598 -
|2 Crossref
|u Li Y, Liu Y, Xie P, Li F, Li G (2014) PAX6, a novel target of microRNA-7, promotes cellular proliferation and invasion in human colorectal cancer cells. Dig Dis Sci 59:598–606. https://doi.org/10.1007/s10620-013-2929-x
|t Dig Dis Sci
|v 59
|y 2014
999 C 5 |a 10.1158/1078-0432.CCR-14-1773
|9 -- missing cx lookup --
|1 YY Li
|p 1447 -
|2 Crossref
|u Li YY, Hanna GJ, Laga AC, Haddad RI, Lorch JH, Hammerman PS (2015) Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clin Cancer Res 21:1447–1456. https://doi.org/10.1158/1078-0432.CCR-14-1773
|t Clin Cancer Res
|v 21
|y 2015
999 C 5 |a 10.3892/mmr.2014.1901
|9 -- missing cx lookup --
|1 G Liang
|p 904 -
|2 Crossref
|u Liang G, Li G, Wang Y, Lei W, Xiao Z (2014) Aberrant miRNA expression response to UV irradiation in human liver cancer cells. Mol Med Rep 9:904–910. https://doi.org/10.3892/mmr.2014.1901
|t Mol Med Rep
|v 9
|y 2014
999 C 5 |a 10.1007/s13277-016-5436-9
|1 HT Liu
|9 -- missing cx lookup --
|2 Crossref
|u Liu HT, Gao P (2016) The roles of microRNAs related with progression and metastasis in human cancers. Tumour Biol. https://doi.org/10.1007/s13277-016-5436-9
|t Tumour Biol
|y 2016
999 C 5 |a 10.3892/ol.2018.9646
|9 -- missing cx lookup --
|1 Q Liu
|p 883 -
|2 Crossref
|u Liu Q, Geng P, Shi L, Wang Q, Wang P (2019a) miR-29 promotes osteosarcoma cell proliferation and migration by targeting PTEN. Oncol Lett 17:883–890. https://doi.org/10.3892/ol.2018.9646
|t Oncol Lett
|v 17
|y 2019
999 C 5 |a 10.1016/j.febslet.2013.05.054
|9 -- missing cx lookup --
|1 S Liu
|p 2247 -
|2 Crossref
|u Liu S, Zhang P, Chen Z, Liu M, Li X, Tang H (2013) MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett 587:2247–2253. https://doi.org/10.1016/j.febslet.2013.05.054
|t FEBS Lett
|v 587
|y 2013
999 C 5 |a 10.3390/cancers11091247
|9 -- missing cx lookup --
|1 T Liu
|p 1247 -
|2 Crossref
|u Liu T, Wang Y, Chan AM (2019b) Multifaceted regulation of PTEN subcellular distributions and biological functions. Cancers (Basel) 11:1247. https://doi.org/10.3390/cancers11091247
|t Cancers (Basel)
|v 11
|y 2019
999 C 5 |a 10.3892/ijo.2014.2322
|9 -- missing cx lookup --
|1 Z Liu
|p 1571 -
|2 Crossref
|u Liu Z, Jiang Z, Huang J, Huang S, Li Y, Yu S, Liu X (2014) miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int J Oncol 44:1571–1580. https://doi.org/10.3892/ijo.2014.2322
|t Int J Oncol
|v 44
|y 2014
999 C 5 |a 10.1006/meth.2001.1262
|9 -- missing cx lookup --
|1 KJ Livak
|p 402 -
|2 Crossref
|u Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
|t Methods
|v 25
|y 2001
999 C 5 |a 10.1186/1471-2407-10-502
|9 -- missing cx lookup --
|1 AJ Lowery
|p 502 -
|2 Crossref
|u Lowery AJ, Miller N, Dwyer RM, Kerin MJ (2010) Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer 10:502. https://doi.org/10.1186/1471-2407-10-502
|t BMC Cancer
|v 10
|y 2010
999 C 5 |a 10.1038/nature10888
|9 -- missing cx lookup --
|1 A Lujambio
|p 347 -
|2 Crossref
|u Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482:347–355. https://doi.org/10.1038/nature10888
|t Nature
|v 482
|y 2012
999 C 5 |a 10.1016/bs.acr.2016.07.004
|9 -- missing cx lookup --
|1 L Ma
|p 165 -
|2 Crossref
|u Ma L (2016) MicroRNA and metastasis. Adv Cancer Res 132:165–207. https://doi.org/10.1016/bs.acr.2016.07.004
|t Adv Cancer Res
|v 132
|y 2016
999 C 5 |a 10.1371/journal.pone.0103987
|9 -- missing cx lookup --
|1 KF Meza-Sosa
|p e103987 -
|2 Crossref
|u Meza-Sosa KF, Perez-Garcia EI, Camacho-Concha N, Lopez-Gutierrez O, Pedraza-Alva G, Perez-Martinez L (2014) MiR-7 promotes epithelial cell transformation by targeting the tumor suppressor KLF4. PLoS ONE 9:e103987. https://doi.org/10.1371/journal.pone.0103987
|t PLoS ONE
|v 9
|y 2014
999 C 5 |a 10.3892/ol.2015.3872
|9 -- missing cx lookup --
|1 F Miao
|p 134 -
|2 Crossref
|u Miao F, Zhu J, Chen Y, Tang N, Wang X, Li X (2016) MicroRNA-183-5p promotes the proliferation, invasion and metastasis of human pancreatic adenocarcinoma cells. Oncol Lett 11:134–140. https://doi.org/10.3892/ol.2015.3872
|t Oncol Lett
|v 11
|y 2016
999 C 5 |a 10.1046/j.1365-4362.1998.00467.x
|9 -- missing cx lookup --
|1 MA Mittelbronn
|p 677 -
|2 Crossref
|u Mittelbronn MA, Mullins DL, Ramos-Caro FA, Flowers FP (1998) Frequency of pre-existing actinic keratosis in cutaneous squamous cell carcinoma. Int J Dermatol 37:677–681
|t Int J Dermatol
|v 37
|y 1998
999 C 5 |a 10.2174/22115366113029990015
|9 -- missing cx lookup --
|1 N Nouraee
|p 102 -
|2 Crossref
|u Nouraee N, Calin GA (2013) MicroRNAs as cancer biomarkers. Microrna 2:102–117
|t Microrna
|v 2
|y 2013
999 C 5 |a 10.1007/s11864-019-0629-2
|9 -- missing cx lookup --
|1 D Ogata
|p 30 -
|2 Crossref
|u Ogata D, Tsuchida T (2019) Systemic immunotherapy for advanced cutaneous squamous cell carcinoma. Curr Treat Options Oncol 20:30. https://doi.org/10.1007/s11864-019-0629-2
|t Curr Treat Options Oncol
|v 20
|y 2019
999 C 5 |a 10.1158/0008-5472.CAN-12-2037
|9 -- missing cx lookup --
|1 H Okuda
|p 1434 -
|2 Crossref
|u Okuda H et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73:1434–1444. https://doi.org/10.1158/0008-5472.CAN-12-2037
|t Cancer Res
|v 73
|y 2013
999 C 5 |a 10.4331/wjbc.v8.i1.45
|9 -- missing cx lookup --
|1 S Oliveto
|p 45 -
|2 Crossref
|u Oliveto S, Mancino M, Manfrini N, Biffo S (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8:45–56. https://doi.org/10.4331/wjbc.v8.i1.45
|t World J Biol Chem
|v 8
|y 2017
999 C 5 |a 10.3390/jcm4121957
|9 -- missing cx lookup --
|1 SR Pfeffer
|p 2012 -
|2 Crossref
|u Pfeffer SR et al (2015) Detection of exosomal miRNAs in the plasma of melanoma patients. J Clin Med 4:2012–2027. https://doi.org/10.3390/jcm4121957
|t J Clin Med
|v 4
|y 2015
999 C 5 |a 10.1158/1078-0432.CCR-14-1768
|9 -- missing cx lookup --
|1 CR Pickering
|p 6582 -
|2 Crossref
|u Pickering CR et al (2014) Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res 20:6582–6592. https://doi.org/10.1158/1078-0432.CCR-14-1768
|t Clin Cancer Res
|v 20
|y 2014
999 C 5 |a 10.1046/j.1523-1747.2000.00173.x
|9 -- missing cx lookup --
|1 S Popp
|p 1095 -
|2 Crossref
|u Popp S, Waltering S, Holtgreve-Grez H, Jauch A, Proby C, Leigh IM, Boukamp P (2000) Genetic characterization of a human skin carcinoma progression model: from primary tumor to metastasis. J Invest Dermatol 115:1095–1103. https://doi.org/10.1046/j.1523-1747.2000.00173.x
|t J Invest Dermatol
|v 115
|y 2000
999 C 5 |a 10.1038/emboj.2009.156
|9 -- missing cx lookup --
|1 J Pothof
|p 2090 -
|2 Crossref
|u Pothof J et al (2009) MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. Embo J 28:2090–2099. https://doi.org/10.1038/emboj.2009.156
|t Embo J
|v 28
|y 2009
999 C 5 |a 10.1034/j.1600-0625.2000.009002104.x
|9 -- missing cx lookup --
|1 CM Proby
|p 104 -
|2 Crossref
|u Proby CM, Purdie KJ, Sexton CJ, Purkis P, Navsaria HA, Stables JN, Leigh IM (2000) Spontaneous keratinocyte cell lines representing early and advanced stages of malignant transformation of the epidermis. Exp Dermatol 9:104–117
|t Exp Dermatol
|v 9
|y 2000
999 C 5 |a 10.1038/srep00318
|9 -- missing cx lookup --
|1 C Qiu
|p 318 -
|2 Crossref
|u Qiu C, Chen G, Cui Q (2012) Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases. Sci Rep 2:318. https://doi.org/10.1038/srep00318
|t Sci Rep
|v 2
|y 2012
999 C 5 |a 10.1371/journal.pone.0039309
|9 -- missing cx lookup --
|1 N Ratert
|p e39309 -
|2 Crossref
|u Ratert N et al (2012) Reference miRNAs for miRNAome analysis of urothelial carcinomas. PLoS ONE 7:e39309. https://doi.org/10.1371/journal.pone.0039309
|t PLoS ONE
|v 7
|y 2012
999 C 5 |a 10.1172/JCI57415
|9 -- missing cx lookup --
|1 V Ratushny
|p 464 -
|2 Crossref
|u Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT (2012) From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest 122:464–472. https://doi.org/10.1172/JCI57415
|t J Clin Invest
|v 122
|y 2012
999 C 5 |a 10.1038/bjc.2014.485
|9 -- missing cx lookup --
|1 LH Ren
|p 2003 -
|2 Crossref
|u Ren LH et al (2014) MicroRNA-183 promotes proliferation and invasion in oesophageal squamous cell carcinoma by targeting programmed cell death 4. Br J Cancer 111:2003–2013. https://doi.org/10.1038/bjc.2014.485
|t Br J Cancer
|v 111
|y 2014
999 C 5 |a 10.1158/1535-7163.MCT-12-0100
|9 -- missing cx lookup --
|1 P Ru
|p 1166 -
|2 Crossref
|u Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB (2012) miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther 11:1166–1173. https://doi.org/10.1158/1535-7163.MCT-12-0100
|t Mol Cancer Ther
|v 11
|y 2012
999 C 5 |a 10.1016/j.biopha.2017.02.091
|9 -- missing cx lookup --
|1 H Ruan
|p 812 -
|2 Crossref
|u Ruan H, Liang X, Zhao W, Ma L, Zhao Y (2017) The effects of microRNA-183 promots cell proliferation and invasion by targeting MMP-9 in endometrial cancer. Biomed Pharmacother 89:812–818. https://doi.org/10.1016/j.biopha.2017.02.091
|t Biomed Pharmacother
|v 89
|y 2017
999 C 5 |a 10.1111/j.1365-2133.2012.11022.x
|9 -- missing cx lookup --
|1 M Sand
|p 847 -
|2 Crossref
|u Sand M et al (2012) Expression of microRNAs in basal cell carcinoma. Br J Dermatol 167:847–855. https://doi.org/10.1111/j.1365-2133.2012.11022.x
|t Br J Dermatol
|v 167
|y 2012
999 C 5 |a 10.1158/0008-5472.CAN-10-2074
|9 -- missing cx lookup --
|1 AL Sarver
|p 9570 -
|2 Crossref
|u Sarver AL, Li L, Subramanian S (2010) MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 70:9570–9580. https://doi.org/10.1158/0008-5472.CAN-10-2074
|t Cancer Res
|v 70
|y 2010
999 C 5 |a 10.1111/bjd.15906
|9 -- missing cx lookup --
|1 J Schmitt
|p 462 -
|2 Crossref
|u Schmitt J et al (2018) Is ultraviolet exposure acquired at work the most important risk factor for cutaneous squamous cell carcinoma? Results of the population-based case-control study FB-181. Br J Dermatol 178:462–472. https://doi.org/10.1111/bjd.15906
|t Br J Dermatol
|v 178
|y 2018
999 C 5 |a 10.1371/journal.pone.0154915
|9 -- missing cx lookup --
|1 J Sha
|p e0154915 -
|2 Crossref
|u Sha J et al (2016) The Response of microRNAs to Solar UVR in skin-resident melanocytes differs between melanoma patients and healthy persons. PLoS ONE 11:e0154915. https://doi.org/10.1371/journal.pone.0154915
|t PLoS ONE
|v 11
|y 2016
999 C 5 |a 10.1007/s00403-016-1705-0
|9 -- missing cx lookup --
|1 O Stojadinovic
|p 133 -
|2 Crossref
|u Stojadinovic O et al (2017) MiR-21 and miR-205 are induced in invasive cutaneous squamous cell carcinomas. Arch Dermatol Res 309:133–139. https://doi.org/10.1007/s00403-016-1705-0
|t Arch Dermatol Res
|v 309
|y 2017
999 C 5 |a 10.1016/j.bbrc.2011.11.160
|9 -- missing cx lookup --
|1 G Tan
|p 546 -
|2 Crossref
|u Tan G, Shi Y, Wu ZH (2012) MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN. Biochem Biophys Res Commun 417:546–551. https://doi.org/10.1016/j.bbrc.2011.11.160
|t Biochem Biophys Res Commun
|v 417
|y 2012
999 C 5 |a 10.1097/CMR.0000000000000450
|1 L Tengda
|9 -- missing cx lookup --
|2 Crossref
|u Tengda L, Shuping L, Mingli G, Jie G, Yun L, Weiwei Z, Anmei D (2018) Serum exosomal microRNAs as potent circulating biomarkers for melanoma. Melanoma Res. https://doi.org/10.1097/CMR.0000000000000450
|t Melanoma Res
|y 2018
999 C 5 |a 10.1038/bjc.2013.125
|9 -- missing cx lookup --
|1 K Ueno
|p 1659 -
|2 Crossref
|u Ueno K et al (2013) microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer 108:1659–1667. https://doi.org/10.1038/bjc.2013.125
|t Br J Cancer
|v 108
|y 2013
999 C 5 |a 10.1186/gb-2002-3-7-research0034
|9 -- missing cx lookup --
|1 J Vandesompele
|p RESEARCH0034 -
|2 Crossref
|u Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. https://doi.org/10.1186/gb-2002-3-7-research0034
|t Genome Biol
|v 3
|y 2002
999 C 5 |a 10.1002/ijc.24183
|9 -- missing cx lookup --
|1 S Veerla
|p 2236 -
|2 Crossref
|u Veerla S et al (2009) MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 124:2236–2242. https://doi.org/10.1002/ijc.24183
|t Int J Cancer
|v 124
|y 2009
999 C 5 |a 10.1155/2016/4517492
|9 -- missing cx lookup --
|1 V Voiculescu
|p 4517492 -
|2 Crossref
|u Voiculescu V et al (2016) From normal skin to squamous cell carcinoma: a quest for novel biomarkers. Dis Markers 2016:4517492. https://doi.org/10.1155/2016/4517492
|t Dis Markers
|v 2016
|y 2016
999 C 5 |a 10.1208/s12248-014-9666-8
|9 -- missing cx lookup --
|1 L Wang
|p 1214 -
|2 Crossref
|u Wang L, Zhang C, Guo Y, Su ZY, Yang Y, Shu L, Kong AN (2014) Blocking of JB6 cell transformation by tanshinone IIA: epigenetic reactivation of Nrf2 antioxidative stress pathway. AAPS J 16:1214–1225. https://doi.org/10.1208/s12248-014-9666-8
|t AAPS J
|v 16
|y 2014
999 C 5 |a 10.18632/oncotarget.21246
|9 -- missing cx lookup --
|1 X Wang
|p 86592 -
|2 Crossref
|u Wang X et al (2017) miR-29a-3p suppresses cell proliferation and migration by downregulating IGF1R in hepatocellular carcinoma. Oncotarget 8:86592–86603. https://doi.org/10.18632/oncotarget.21246
|t Oncotarget
|v 8
|y 2017
999 C 5 |a 10.1074/jbc.M804280200
|9 -- missing cx lookup --
|1 RJ Webster
|p 5731 -
|2 Crossref
|u Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 284:5731–5741. https://doi.org/10.1074/jbc.M804280200
|t J Biol Chem
|v 284
|y 2009
999 C 5 |1 DG Wu
|y 2011
|2 Crossref
|u Wu DG et al (2011) MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chin Med J (Engl) 124:2616–2621
999 C 5 |a 10.1016/j.cca.2012.02.016
|9 -- missing cx lookup --
|1 Q Wu
|p 1058 -
|2 Crossref
|u Wu Q, Wang C, Lu Z, Guo L, Ge Q (2012) Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta 413:1058–1065. https://doi.org/10.1016/j.cca.2012.02.016
|t Clin Chim Acta
|v 413
|y 2012
999 C 5 |a 10.1158/1055-9965.EPI-13-0821
|9 -- missing cx lookup --
|1 S Wu
|p 1080 -
|2 Crossref
|u Wu S, Han J, Laden F, Qureshi AA (2014a) Long-term ultraviolet flux, other potential risk factors, and skin cancer risk: a cohort study. Cancer Epidemiol Biomarkers Prev 23:1080–1089. https://doi.org/10.1158/1055-9965.EPI-13-0821
|t Cancer Epidemiol Biomarkers Prev
|v 23
|y 2014
999 C 5 |a 10.1038/bjc.2014.43
|9 -- missing cx lookup --
|1 S Wu
|p 1855 -
|2 Crossref
|u Wu S, Han J, Vleugels RA, Puett R, Laden F, Hunter DJ, Qureshi AA (2014b) Cumulative ultraviolet radiation flux in adulthood and risk of incident skin cancers in women. Br J Cancer 110:1855–1861. https://doi.org/10.1038/bjc.2014.43
|t Br J Cancer
|v 110
|y 2014
999 C 5 |a 10.1039/c5an00688k
|9 -- missing cx lookup --
|1 Y Wu
|p 6631 -
|2 Crossref
|u Wu Y, Deng W, Klinke DJ 2nd (2015) Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140:6631–6642. https://doi.org/10.1039/c5an00688k
|t Analyst
|v 140
|y 2015
999 C 5 |a 10.1001/jamadermatol.2014.762
|9 -- missing cx lookup --
|1 F Xiang
|p 1063 -
|2 Crossref
|u Xiang F, Lucas R, Hales S, Neale R (2014) Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978–2012: empirical relationships. JAMA Dermatol 150:1063–1071. https://doi.org/10.1001/jamadermatol.2014.762
|t JAMA Dermatol
|v 150
|y 2014
999 C 5 |a 10.1016/j.canlet.2016.03.050
|9 -- missing cx lookup --
|1 D Xiao
|p 318 -
|2 Crossref
|u Xiao D et al (2016) Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett 376:318–327. https://doi.org/10.1016/j.canlet.2016.03.050
|t Cancer Lett
|v 376
|y 2016
999 C 5 |a 10.3892/or.2014.3052
|9 -- missing cx lookup --
|1 J Xie
|p 1715 -
|2 Crossref
|u Xie J et al (2014) miR-7 inhibits the invasion and metastasis of gastric cancer cells by suppressing epidermal growth factor receptor expression. Oncol Rep 31:1715–1722. https://doi.org/10.3892/or.2014.3052
|t Oncol Rep
|v 31
|y 2014
999 C 5 |a 10.1158/0008-5472.CAN-08-4517
|9 -- missing cx lookup --
|1 H Xu
|p 6275 -
|2 Crossref
|u Xu H, Cheung IY, Guo HF, Cheung NK (2009) MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7–H3: potential implications for immune based therapy of human solid tumors. Cancer Res 69:6275–6281. https://doi.org/10.1158/0008-5472.CAN-08-4517
|t Cancer Res
|v 69
|y 2009
999 C 5 |a 10.3727/096504016X14685034103239
|9 -- missing cx lookup --
|1 D Yan
|p 399 -
|2 Crossref
|u Yan D, Cai X, Feng Y (2016) miR-183 modulates cell apoptosis and proliferation in tongue squamous cell carcinoma SCC25 cell line. Oncol Res 24:399–404. https://doi.org/10.3727/096504016X14685034103239
|t Oncol Res
|v 24
|y 2016
999 C 5 |a 10.1016/j.ccr.2006.01.025
|9 -- missing cx lookup --
|1 N Yanaihara
|p 189 -
|2 Crossref
|u Yanaihara N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198. https://doi.org/10.1016/j.ccr.2006.01.025
|t Cancer Cell
|v 9
|y 2006
999 C 5 |a 10.1186/s12943-017-0718-4
|9 -- missing cx lookup --
|1 F Yang
|p 148 -
|2 Crossref
|u Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, Shen H (2017) Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer 16:148. https://doi.org/10.1186/s12943-017-0718-4
|t Mol Cancer
|v 16
|y 2017
999 C 5 |a 10.14348/molcells.2014.0147
|9 -- missing cx lookup --
|1 M Yang
|p 873 -
|2 Crossref
|u Yang M et al (2014) miRNA-183 suppresses apoptosis and promotes proliferation in esophageal cancer by targeting PDCD4. Mol Cells 37:873–880. https://doi.org/10.14348/molcells.2014.0147
|t Mol Cells
|v 37
|y 2014
999 C 5 |a 10.1016/j.bbrc.2018.01.170
|9 -- missing cx lookup --
|1 X Yang
|p 1197 -
|2 Crossref
|u Yang X, Wang L, Wang Q, Li L, Fu Y, Sun J (2018) MiR-183 inhibits osteosarcoma cell growth and invasion by regulating LRP6-Wnt/beta-catenin signaling pathway. Biochem Biophys Res Commun 496:1197–1203. https://doi.org/10.1016/j.bbrc.2018.01.170
|t Biochem Biophys Res Commun
|v 496
|y 2018
999 C 5 |a 10.1155/2011/210813
|9 -- missing cx lookup --
|1 VR Yanofsky
|p 210813 -
|2 Crossref
|u Yanofsky VR, Mercer SE, Phelps RG (2011) Histopathological variants of cutaneous squamous cell carcinoma: a review. J Skin Cancer 2011:210813. https://doi.org/10.1155/2011/210813
|t J Skin Cancer
|v 2011
|y 2011
999 C 5 |a 10.1111/jcmm.12649
|9 -- missing cx lookup --
|1 X Yu
|p 3 -
|2 Crossref
|u Yu X, Li Z (2016) The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med 20:3–9. https://doi.org/10.1111/jcmm.12649
|t J Cell Mol Med
|v 20
|y 2016
999 C 5 |a 10.1007/s10735-013-9516-5
|9 -- missing cx lookup --
|1 Z Yu
|p 669 -
|2 Crossref
|u Yu Z et al (2013) Identification of miR-7 as an oncogene in renal cell carcinoma. J Mol Histol 44:669–677. https://doi.org/10.1007/s10735-013-9516-5
|t J Mol Histol
|v 44
|y 2013
999 C 5 |a 10.1016/j.gpb.2015.02.001
|9 -- missing cx lookup --
|1 J Zhang
|p 17 -
|2 Crossref
|u Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015a) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24. https://doi.org/10.1016/j.gpb.2015.02.001
|t Genomics Proteomics Bioinformatics
|v 13
|y 2015
999 C 5 |a 10.1038/nature15376
|9 -- missing cx lookup --
|1 L Zhang
|p 100 -
|2 Crossref
|u Zhang L et al (2015b) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100–104. https://doi.org/10.1038/nature15376
|t Nature
|v 527
|y 2015
999 C 5 |a 10.1002/jbt.21451
|9 -- missing cx lookup --
|1 B Zhao
|p 184 -
|2 Crossref
|u Zhao B, Ming M, He YY (2013) Suppression of PTEN transcription by UVA. J Biochem Mol Toxicol 27:184–191. https://doi.org/10.1002/jbt.21451
|t J Biochem Mol Toxicol
|v 27
|y 2013
999 C 5 |a 10.1111/j.1600-0625.2012.01465.x
|9 -- missing cx lookup --
|1 BR Zhou
|p 317 -
|2 Crossref
|u Zhou BR et al (2012) Characterization of the miRNA profile in UVB-irradiated normal human keratinocytes. Exp Dermatol 21:317–319. https://doi.org/10.1111/j.1600-0625.2012.01465.x
|t Exp Dermatol
|v 21
|y 2012
999 C 5 |a 10.1371/journal.pone.0096718
|9 -- missing cx lookup --
|1 X Zhou
|p e96718 -
|2 Crossref
|u Zhou X et al (2014) MicroRNA-7 inhibits tumor metastasis and reverses epithelial-mesenchymal transition through AKT/ERK1/2 inactivation by targeting EGFR in epithelial ovarian cancer. PLoS ONE 9:e96718. https://doi.org/10.1371/journal.pone.0096718
|t PLoS ONE
|v 9
|y 2014


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21