000157752 001__ 157752
000157752 005__ 20240229123144.0
000157752 0247_ $$2doi$$a10.3791/61235
000157752 0247_ $$2pmid$$apmid:32865533
000157752 0247_ $$2altmetric$$aaltmetric:89234647
000157752 037__ $$aDKFZ-2020-01789
000157752 041__ $$aeng
000157752 082__ $$a570
000157752 1001_ $$aEllmann, Stephan$$b0
000157752 245__ $$aMachine Learning Algorithms for Early Detection of Bone Metastases in an Experimental Rat Model.
000157752 260__ $$aCambridge, MA$$bJoVE$$c2020
000157752 3367_ $$2DRIVER$$aarticle
000157752 3367_ $$2DataCite$$aOutput Types/Journal article
000157752 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610963205_19582
000157752 3367_ $$2BibTeX$$aARTICLE
000157752 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000157752 3367_ $$00$$2EndNote$$aJournal Article
000157752 520__ $$aMachine learning (ML) algorithms permit the integration of different features into a model to perform classification or regression tasks with an accuracy exceeding its constituents. This protocol describes the development of an ML algorithm to predict the growth of breast cancer bone macrometastases in a rat model before any abnormalities are observable with standard imaging methods. Such an algorithm can facilitate the detection of early metastatic disease (i.e., micrometastasis) that is regularly missed during staging examinations. The applied metastasis model is site-specific, meaning that the rats develop metastases exclusively in their right hind leg. The model's tumor-take rate is 60%-80%, with macrometastases becoming visible in magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) in a subset of animals 30 days after induction, whereas a second subset of animals exhibit no tumor growth. Starting from image examinations acquired at an earlier time point, this protocol describes the extraction of features that indicate tissue vascularization detected by MRI, glucose metabolism by PET/CT, and the subsequent determination of the most relevant features for the prediction of macrometastatic disease. These features are then fed into a model-averaged neural network (avNNet) to classify the animals into one of two groups: one that will develop metastases and the other that will not develop any tumors. The protocol also describes the calculation of standard diagnostic parameters, such as overall accuracy, sensitivity, specificity, negative/positive predictive values, likelihood ratios, and the development of a receiver operating characteristic. An advantage of the proposed protocol is its flexibility, as it can be easily adapted to train a plethora of different ML algorithms with adjustable combinations of an unlimited number of features. Moreover, it can be used to analyze different problems in oncology, infection, and inflammation.
000157752 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000157752 588__ $$aDataset connected to CrossRef, PubMed,
000157752 7001_ $$aSeyler, Lisa$$b1
000157752 7001_ $$0P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad$$aGillmann, Clarissa$$b2$$udkfz
000157752 7001_ $$aPopp, Vanessa$$b3
000157752 7001_ $$aTreutlein, Christoph$$b4
000157752 7001_ $$aBozec, Aline$$b5
000157752 7001_ $$aUder, Michael$$b6
000157752 7001_ $$aBäuerle, Tobias$$b7
000157752 773__ $$0PERI:(DE-600)2259946-0$$a10.3791/61235$$gno. 162, p. 61235$$p61235$$tJoVE journal$$v162$$x1940-087X$$y2020
000157752 909CO $$ooai:inrepo02.dkfz.de:157752$$pVDB
000157752 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000157752 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000157752 9141_ $$y2020
000157752 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJOVE-J VIS EXP : 2018$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-13
000157752 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-10-13
000157752 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000157752 980__ $$ajournal
000157752 980__ $$aVDB
000157752 980__ $$aI:(DE-He78)E040-20160331
000157752 980__ $$aUNRESTRICTED