001 | 163010 | ||
005 | 20240229133508.0 | ||
024 | 7 | _ | |a 10.1016/j.euo.2020.08.004 |2 doi |
024 | 7 | _ | |a pmid:32873530 |2 pmid |
024 | 7 | _ | |a altmetric:89854666 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-01803 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Darr, Christopher |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Three-dimensional Magnetic Resonance Imaging-based Printed Models of Prostate Anatomy and Targeted Biopsy-proven Index Tumor to Facilitate Patient-tailored Radical Prostatectomy-A Feasibility Study. |
260 | _ | _ | |a Amsterdam |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1654249123_3574 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Volume 5, Issue 3, June 2022, Pages 357-361 |
520 | _ | _ | |a In this prospective single-center feasibility study, we demonstrate that the use of three-dimensional (3D)-printed prostate models support nerve-sparing radical prostatectomy (RP) and intraoperative frozen sectioning (IFS) in ten men suffering from intermediate- and high-risk prostate cancer (PC), of whom seven harbored pT3 disease. Patient-specific 3D resin models were printed based on preoperative multiparametric magnetic resonance imaging (mpMRI) to provide an exact 3D impression of significant tumor lesions. RP and IFS were planned in a patient-tailored fashion. The 36-region Prostate Imaging Reporting and Data System (PI-RADS) v2.0 scheme was used to compare the MRI/3D print with whole-mount histopathology. In all cases, localization of the index lesion was correctly displayed by MRI and the 3D model. Localization of significant PC lesions correlated significantly (Pearson`s correlation coefficient of 0.88; pā<ā 0.001). In addition, a significant correlation of the width, length, and volume of the tumor and prostate gland, derived from the printed model and histopathology, was found, using Pearson's correlation analyses and Bland-Altman plots. In conclusion, 3D-printed prostate models correlate well with final pathology and can be used to tailor RP. PATIENT SUMMARY: The use of three-dimensional (3D)-printed prostate models based on preoperative magnetic resonance imaging (MRI) may improve prostatectomy outcome. This study confirmed the accuracy of 3D-printed prostates compared with pathology from radical prostatectomy specimens. Thus, MRI-derived 3D-printed prostate models can assist in prostate cancer surgery. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Finis, Friederike |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Wiesenfarth, Manuel |0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864 |b 2 |
700 | 1 | _ | |a Giganti, Francesco |b 3 |
700 | 1 | _ | |a Tschirdewahn, Stephan |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Krafft, Ulrich |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Kesch, Claudia |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Bonekamp, David |0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93 |b 7 |
700 | 1 | _ | |a Forsting, Michael |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Wetter, Axel |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Reis, Henning |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Hadaschik, Boris A |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Haubold, Johannes |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Radtke, Jan Philipp |0 P:(DE-He78)79897f8897ff77676549d9895258a0f2 |b 13 |e Last author |
773 | _ | _ | |a 10.1016/j.euo.2020.08.004 |g p. S2588931120301280 |0 PERI:(DE-600)2945338-0 |n 3 |p 357-361 |t European urology oncology |v 5 |y 2022 |x 2588-9311 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:163010 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)79897f8897ff77676549d9895258a0f2 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR UROL ONCOL : 2021 |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-12 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b EUR UROL ONCOL : 2021 |d 2022-11-12 |
920 | 1 | _ | |0 I:(DE-He78)ED01-20160331 |k ED01 |l DKTK ED ES zentral |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 1 |
920 | 1 | _ | |0 I:(DE-He78)E010-20160331 |k E010 |l E010 Radiologie |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)ED01-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a I:(DE-He78)E010-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|