000163026 001__ 163026
000163026 005__ 20240229123145.0
000163026 0247_ $$2doi$$a10.1038/s41598-020-71302-5
000163026 0247_ $$2pmid$$apmid:32883969
000163026 0247_ $$2pmc$$apmc:PMC7471961
000163026 0247_ $$2altmetric$$aaltmetric:89505228
000163026 037__ $$aDKFZ-2020-01817
000163026 041__ $$aeng
000163026 082__ $$a600
000163026 1001_ $$aChristakoudi, Sofia$$b0
000163026 245__ $$aA Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: results from a large European cohort.
000163026 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2020
000163026 3367_ $$2DRIVER$$aarticle
000163026 3367_ $$2DataCite$$aOutput Types/Journal article
000163026 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599743692_19952
000163026 3367_ $$2BibTeX$$aARTICLE
000163026 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163026 3367_ $$00$$2EndNote$$aJournal Article
000163026 520__ $$aAbdominal and general adiposity are independently associated with mortality, but there is no consensus on how best to assess abdominal adiposity. We compared the ability of alternative waist indices to complement body mass index (BMI) when assessing all-cause mortality. We used data from 352,985 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) and Cox proportional hazards models adjusted for other risk factors. During a mean follow-up of 16.1 years, 38,178 participants died. Combining in one model BMI and a strongly correlated waist index altered the association patterns with mortality, to a predominantly negative association for BMI and a stronger positive association for the waist index, while combining BMI with the uncorrelated A Body Shape Index (ABSI) preserved the association patterns. Sex-specific cohort-wide quartiles of waist indices correlated with BMI could not separate high-risk from low-risk individuals within underweight (BMI < 18.5 kg/m2) or obese (BMI ≥ 30 kg/m2) categories, while the highest quartile of ABSI separated 18-39% of the individuals within each BMI category, which had 22-55% higher risk of death. In conclusion, only a waist index independent of BMI by design, such as ABSI, complements BMI and enables efficient risk stratification, which could facilitate personalisation of screening, treatment and monitoring.
000163026 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000163026 588__ $$aDataset connected to CrossRef, PubMed,
000163026 7001_ $$aTsilidis, Konstantinos K$$b1
000163026 7001_ $$aMuller, David C$$b2
000163026 7001_ $$aFreisling, Heinz$$b3
000163026 7001_ $$aWeiderpass, Elisabete$$b4
000163026 7001_ $$aOvervad, Kim$$b5
000163026 7001_ $$aSöderberg, Stefan$$b6
000163026 7001_ $$aHäggström, Christel$$b7
000163026 7001_ $$aPischon, Tobias$$b8
000163026 7001_ $$aDahm, Christina C$$b9
000163026 7001_ $$aZhang, Jie$$b10
000163026 7001_ $$aTjønneland, Anne$$b11
000163026 7001_ $$aHalkjær, Jytte$$b12
000163026 7001_ $$aMacDonald, Conor$$b13
000163026 7001_ $$aBoutron-Ruault, Marie-Christine$$b14
000163026 7001_ $$aMancini, Francesca Romana$$b15
000163026 7001_ $$0P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aKühn, Tilman$$b16$$udkfz
000163026 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b17$$udkfz
000163026 7001_ $$aSchulze, Matthias B$$b18
000163026 7001_ $$aTrichopoulou, Antonia$$b19
000163026 7001_ $$aKarakatsani, Anna$$b20
000163026 7001_ $$aPeppa, Eleni$$b21
000163026 7001_ $$aMasala, Giovanna$$b22
000163026 7001_ $$aPala, Valeria$$b23
000163026 7001_ $$aPanico, Salvatore$$b24
000163026 7001_ $$aTumino, Rosario$$b25
000163026 7001_ $$aSacerdote, Carlotta$$b26
000163026 7001_ $$aQuirós, J Ramón$$b27
000163026 7001_ $$aAgudo, Antonio$$b28
000163026 7001_ $$aSánchez, Maria-Jose$$b29
000163026 7001_ $$aCirera, Lluís$$b30
000163026 7001_ $$aBarricarte-Gurrea, Aurelio$$b31
000163026 7001_ $$aAmiano, Pilar$$b32
000163026 7001_ $$aMemarian, Ensieh$$b33
000163026 7001_ $$aSonestedt, Emily$$b34
000163026 7001_ $$aBueno-de-Mesquita, Bas$$b35
000163026 7001_ $$aMay, Anne M$$b36
000163026 7001_ $$aKhaw, Kay-Tee$$b37
000163026 7001_ $$aWareham, Nicholas J$$b38
000163026 7001_ $$aTong, Tammy Y N$$b39
000163026 7001_ $$aHuybrechts, Inge$$b40
000163026 7001_ $$aNoh, Hwayoung$$b41
000163026 7001_ $$aAglago, Elom K$$b42
000163026 7001_ $$aEllingjord-Dale, Merete$$b43
000163026 7001_ $$aWard, Heather A$$b44
000163026 7001_ $$aAune, Dagfinn$$b45
000163026 7001_ $$aRiboli, Elio$$b46
000163026 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-71302-5$$gVol. 10, no. 1, p. 14541$$n1$$p14541$$tScientific reports$$v10$$x2045-2322$$y2020
000163026 909CO $$ooai:inrepo02.dkfz.de:163026$$pVDB
000163026 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000163026 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b17$$kDKFZ
000163026 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000163026 9141_ $$y2020
000163026 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2018$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-16
000163026 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000163026 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000163026 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000163026 980__ $$ajournal
000163026 980__ $$aVDB
000163026 980__ $$aI:(DE-He78)C020-20160331
000163026 980__ $$aUNRESTRICTED