001     163026
005     20240229123145.0
024 7 _ |a 10.1038/s41598-020-71302-5
|2 doi
024 7 _ |a pmid:32883969
|2 pmid
024 7 _ |a pmc:PMC7471961
|2 pmc
024 7 _ |a altmetric:89505228
|2 altmetric
037 _ _ |a DKFZ-2020-01817
041 _ _ |a eng
082 _ _ |a 600
100 1 _ |a Christakoudi, Sofia
|b 0
245 _ _ |a A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: results from a large European cohort.
260 _ _ |a [London]
|c 2020
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599743692_19952
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Abdominal and general adiposity are independently associated with mortality, but there is no consensus on how best to assess abdominal adiposity. We compared the ability of alternative waist indices to complement body mass index (BMI) when assessing all-cause mortality. We used data from 352,985 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) and Cox proportional hazards models adjusted for other risk factors. During a mean follow-up of 16.1 years, 38,178 participants died. Combining in one model BMI and a strongly correlated waist index altered the association patterns with mortality, to a predominantly negative association for BMI and a stronger positive association for the waist index, while combining BMI with the uncorrelated A Body Shape Index (ABSI) preserved the association patterns. Sex-specific cohort-wide quartiles of waist indices correlated with BMI could not separate high-risk from low-risk individuals within underweight (BMI < 18.5 kg/m2) or obese (BMI ≥ 30 kg/m2) categories, while the highest quartile of ABSI separated 18-39% of the individuals within each BMI category, which had 22-55% higher risk of death. In conclusion, only a waist index independent of BMI by design, such as ABSI, complements BMI and enables efficient risk stratification, which could facilitate personalisation of screening, treatment and monitoring.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Tsilidis, Konstantinos K
|b 1
700 1 _ |a Muller, David C
|b 2
700 1 _ |a Freisling, Heinz
|b 3
700 1 _ |a Weiderpass, Elisabete
|b 4
700 1 _ |a Overvad, Kim
|b 5
700 1 _ |a Söderberg, Stefan
|b 6
700 1 _ |a Häggström, Christel
|b 7
700 1 _ |a Pischon, Tobias
|b 8
700 1 _ |a Dahm, Christina C
|b 9
700 1 _ |a Zhang, Jie
|b 10
700 1 _ |a Tjønneland, Anne
|b 11
700 1 _ |a Halkjær, Jytte
|b 12
700 1 _ |a MacDonald, Conor
|b 13
700 1 _ |a Boutron-Ruault, Marie-Christine
|b 14
700 1 _ |a Mancini, Francesca Romana
|b 15
700 1 _ |a Kühn, Tilman
|0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
|b 16
|u dkfz
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 17
|u dkfz
700 1 _ |a Schulze, Matthias B
|b 18
700 1 _ |a Trichopoulou, Antonia
|b 19
700 1 _ |a Karakatsani, Anna
|b 20
700 1 _ |a Peppa, Eleni
|b 21
700 1 _ |a Masala, Giovanna
|b 22
700 1 _ |a Pala, Valeria
|b 23
700 1 _ |a Panico, Salvatore
|b 24
700 1 _ |a Tumino, Rosario
|b 25
700 1 _ |a Sacerdote, Carlotta
|b 26
700 1 _ |a Quirós, J Ramón
|b 27
700 1 _ |a Agudo, Antonio
|b 28
700 1 _ |a Sánchez, Maria-Jose
|b 29
700 1 _ |a Cirera, Lluís
|b 30
700 1 _ |a Barricarte-Gurrea, Aurelio
|b 31
700 1 _ |a Amiano, Pilar
|b 32
700 1 _ |a Memarian, Ensieh
|b 33
700 1 _ |a Sonestedt, Emily
|b 34
700 1 _ |a Bueno-de-Mesquita, Bas
|b 35
700 1 _ |a May, Anne M
|b 36
700 1 _ |a Khaw, Kay-Tee
|b 37
700 1 _ |a Wareham, Nicholas J
|b 38
700 1 _ |a Tong, Tammy Y N
|b 39
700 1 _ |a Huybrechts, Inge
|b 40
700 1 _ |a Noh, Hwayoung
|b 41
700 1 _ |a Aglago, Elom K
|b 42
700 1 _ |a Ellingjord-Dale, Merete
|b 43
700 1 _ |a Ward, Heather A
|b 44
700 1 _ |a Aune, Dagfinn
|b 45
700 1 _ |a Riboli, Elio
|b 46
773 _ _ |a 10.1038/s41598-020-71302-5
|g Vol. 10, no. 1, p. 14541
|0 PERI:(DE-600)2615211-3
|n 1
|p 14541
|t Scientific reports
|v 10
|y 2020
|x 2045-2322
909 C O |o oai:inrepo02.dkfz.de:163026
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-16
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-16
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21