000163162 001__ 163162
000163162 005__ 20240229133509.0
000163162 0247_ $$2pmid$$apmid:32920979
000163162 0247_ $$2ISSN$$a1574-7891
000163162 0247_ $$2ISSN$$a1878-0261
000163162 0247_ $$2doi$$adoi: 10.1002/1878-0261.12800.
000163162 037__ $$aDKFZ-2020-01865
000163162 041__ $$aeng
000163162 082__ $$a610
000163162 1001_ $$aMiele, Evelina$$b0
000163162 245__ $$aDownregulation of miR-326 and its host gene β-arrestin1 induces pro survival activity of E2F1 and promotes medulloblastoma growth.
000163162 260__ $$aHoboken, NJ$$bJohn Wiley & Sons, Inc.$$c2021
000163162 3367_ $$2DRIVER$$aarticle
000163162 3367_ $$2DataCite$$aOutput Types/Journal article
000163162 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614945055_14401
000163162 3367_ $$2BibTeX$$aARTICLE
000163162 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163162 3367_ $$00$$2EndNote$$aJournal Article
000163162 500__ $$a2021 Feb;15(2):523-542
000163162 520__ $$aPersistent mortality rates of medulloblastoma (MB) and severe side effects of the current therapies require the definition of the molecular mechanisms that contribute to tumor progression. Using cultured MB cancer stem cells and xenograft tumors generated in mice, we show that low expression of miR-326 and its host gene β-arrestin1 (ARRB1) promotes tumor growth enhancing the E2F1 pro-survival function. Our models revealed that miR-326 and ARRB1 are controlled by a bivalent domain, since the H3K27me3 repressive mark is found at their regulatory region together with the activation-associated H3K4me3 mark. High levels of EZH2, a feature of MB, are responsible for the presence of H3K27me3. Ectopic expression of miR-326 and ARRB1 provides hints into how their low levels regulate E2F1 activity. MiR-326 targets E2F1 mRNA, thereby reducing its protein levels; ARRB1, triggering E2F1 acetylation, reverses its function into pro-apoptotic activity. Similar to miR-326 and ARRB1 overexpression, we also show that EZH2 inhibition restores miR-326/ARRB1 expression, limiting E2F1 pro-proliferative activity. Our results reveal a new regulatory molecular axis critical for MB progression.
000163162 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000163162 588__ $$aDataset connected to PubMed,
000163162 7001_ $$00000-0002-9346-8782$$aPo, Agnese$$b1
000163162 7001_ $$aMastronuzzi, Angela$$b2
000163162 7001_ $$aCarai, Andrea$$b3
000163162 7001_ $$00000-0003-0317-9854$$aBesharat, Zein Mersini$$b4
000163162 7001_ $$aPediconi, Natalia$$b5
000163162 7001_ $$aAbballe, Luana$$b6
000163162 7001_ $$aCatanzaro, Giuseppina$$b7
000163162 7001_ $$aSabato, Claudia$$b8
000163162 7001_ $$aDe Smaele, Enrico$$b9
000163162 7001_ $$aCanettieri, Gianluca$$b10
000163162 7001_ $$aDi Marcotullio, Lucia$$b11
000163162 7001_ $$aVacca, Alessandra$$b12
000163162 7001_ $$aMai, Antonello$$b13
000163162 7001_ $$aLevrero, Massimo$$b14
000163162 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan M$$b15$$udkfz
000163162 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b16$$udkfz
000163162 7001_ $$aGiangaspero, Felice$$b17
000163162 7001_ $$aLocatelli, Franco$$b18
000163162 7001_ $$aFerretti, Elisabetta$$b19
000163162 773__ $$0PERI:(DE-600)2322586-5$$a10.1002/1878-0261.12800.$$n2$$p523-542$$tMolecular oncology$$v15$$x1574-7891$$y2021
000163162 909CO $$ooai:inrepo02.dkfz.de:163162$$pVDB
000163162 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000163162 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000163162 9130_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000163162 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000163162 9141_ $$y2021
000163162 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL ONCOL : 2018$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-06
000163162 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL ONCOL : 2018$$d2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-06
000163162 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-06
000163162 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000163162 980__ $$ajournal
000163162 980__ $$aVDB
000163162 980__ $$aI:(DE-He78)B062-20160331
000163162 980__ $$aUNRESTRICTED