000163182 001__ 163182
000163182 005__ 20240229123150.0
000163182 0247_ $$2doi$$a10.1088/1361-6560/abb7c3
000163182 0247_ $$2pmid$$apmid:32916667
000163182 0247_ $$2ISSN$$a0031-9155
000163182 0247_ $$2ISSN$$a1361-6560
000163182 0247_ $$2altmetric$$aaltmetric:92333405
000163182 037__ $$aDKFZ-2020-01885
000163182 041__ $$aeng
000163182 082__ $$a530
000163182 1001_ $$00000-0001-7565-3186$$aTaeubert, Leticia$$b0$$eFirst author
000163182 245__ $$aCT-based attenuation correction of whole-body radiotherapy treatment positioning devices in PET/MRI hybrid imaging.
000163182 260__ $$aBristol$$bIOP Publ.$$c2020
000163182 3367_ $$2DRIVER$$aarticle
000163182 3367_ $$2DataCite$$aOutput Types/Journal article
000163182 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661780231_23007
000163182 3367_ $$2BibTeX$$aARTICLE
000163182 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163182 3367_ $$00$$2EndNote$$aJournal Article
000163182 500__ $$a#EA:E040#LA:#E0402020 Nov 27;65(23):23NT02
000163182 520__ $$aObjective To implement Computed Tomography (CT)-based attenuation maps of radiotherapy (RT) positioning hardware and radiofrequency (RF) coils to enable hybrid positron emission tomography/magnetic resonance imaging (PET/MRI)-based RT treatment planning. Materials and Methods The RT positioning hardware consisted of a flat RT table overlay, coil holders for abdominal scans, coil holders for head and neck scans and an MRI compatible hip and leg immobilization system. CT images of each hardware element were acquired on a CT scanner. Based on the CT images, attenuation maps of the devices were created. Validation measurements were performed on a PET/MR scanner using a 68Ge phantom (48 MBq, 10 min scan time). Scans with each device in treatment position were performed. Then, reference scans containing only the phantom were taken. The scans were reconstructed online (at the PET/MRI scanner) and offline (via e7tools on a PC) using identical reconstruction parameters. Average reconstructed activity concentrations of the device and reference scans were compared. Results The device attenuation maps were successfully implemented. The RT positioning devices caused an average decrease of reconstructed PET activity concentration in the range between -8.3 ± 2.1 % (mean ± SD) (head and neck coil holder with coils) to -1.0 ± 0.5 % (abdominal coil holder). With attenuation correction taking into account RT hardware, these values were reduced to -2.0 ± 1.2 % and 0.6 ± 0.5 %, respectively. The results of the offline and online reconstructions were nearly identical, with a difference of up to 0.2 %. Conclusion The decrease in reconstructed activity concentration caused by the RT positioning devices is clinically relevant and can successfully be corrected using CT-based attenuation maps. Both the offline and online reconstruction methods are viable options.
000163182 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000163182 588__ $$aDataset connected to CrossRef, PubMed,
000163182 7001_ $$0P:(DE-He78)b9b209c7129285852f61f807f332725a$$aBerker, Yannick$$b1
000163182 7001_ $$0P:(DE-He78)c5312d96130619e491466891238cc117$$aBeuthien-Baumann, Bettina$$b2
000163182 7001_ $$aHoffmann, Aswin Louis$$b3
000163182 7001_ $$0P:(DE-He78)91d4b4a1e36e2bec6c08ac43e6820834$$aTroost, Esther G C$$b4$$udkfz
000163182 7001_ $$00000-0001-9351-4761$$aKachelriess, Marc$$b5
000163182 7001_ $$0P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad$$aGillmann, Clarissa$$b6$$eLast author
000163182 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/abb7c3$$n23$$p23NT02$$tPhysics in medicine and biology$$v65$$x1361-6560$$y2020
000163182 909CO $$ooai:inrepo02.dkfz.de:163182$$pVDB
000163182 9101_ $$0I:(DE-588b)2036810-0$$60000-0001-7565-3186$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000163182 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b9b209c7129285852f61f807f332725a$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000163182 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c5312d96130619e491466891238cc117$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000163182 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)91d4b4a1e36e2bec6c08ac43e6820834$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000163182 9101_ $$0I:(DE-588b)2036810-0$$60000-0001-9351-4761$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000163182 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000163182 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000163182 9132_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000163182 9141_ $$y2020
000163182 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger
000163182 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-27$$wger
000163182 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2018$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000163182 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000163182 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000163182 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x1
000163182 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x2
000163182 9201_ $$0I:(DE-He78)DD01-20160331$$kDD01$$lDKTK DD zentral$$x3
000163182 980__ $$ajournal
000163182 980__ $$aVDB
000163182 980__ $$aI:(DE-He78)E040-20160331
000163182 980__ $$aI:(DE-He78)E025-20160331
000163182 980__ $$aI:(DE-He78)E010-20160331
000163182 980__ $$aI:(DE-He78)DD01-20160331
000163182 980__ $$aUNRESTRICTED