000163198 001__ 163198
000163198 005__ 20240229123151.0
000163198 0247_ $$2doi$$a10.1101/gad.339978.120
000163198 0247_ $$2pmid$$apmid:32912900
000163198 0247_ $$2ISSN$$a0890-9369
000163198 0247_ $$2ISSN$$a1549-5477
000163198 0247_ $$2altmetric$$aaltmetric:89812096
000163198 037__ $$aDKFZ-2020-01895
000163198 041__ $$aeng
000163198 082__ $$a570
000163198 1001_ $$00000-0001-5706-0571$$aParisian, Alison D$$b0
000163198 245__ $$aSMARCB1 loss interacts with neuronal differentiation state to block maturation and impact cell stability.
000163198 260__ $$aCold Spring Harbor, NY$$bLaboratory Press$$c2020
000163198 3367_ $$2DRIVER$$aarticle
000163198 3367_ $$2DataCite$$aOutput Types/Journal article
000163198 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602575334_2967
000163198 3367_ $$2BibTeX$$aARTICLE
000163198 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163198 3367_ $$00$$2EndNote$$aJournal Article
000163198 500__ $$a 2020 Oct 1;34(19-20):1316-1329
000163198 520__ $$aAtypical teratoid rhabdoid tumors (ATRTs) are challenging pediatric brain cancers that are predominantly associated with inactivation of the gene SMARCB1, a conserved subunit of the chromatin remodeling BAF complex, which has known contributions to developmental processes. To identify potential interactions between SMARCB1 loss and the process of neural development, we introduced an inducible SMARCB1 loss-of-function system into human induced pluripotent stem cells (iPSCs) that were subjected to either directed neuronal differentiation or differentiation into cerebral organoids. Using this system, we identified substantial differences in the downstream effects of SMARCB1 loss depending on differentiation state and identified an interaction between SMARCB1 loss and neural differentiation pressure that causes a resistance to terminal differentiation and a defect in maintenance of a normal cell state. Our results provide insight into how SMARCB1 loss might interact with neural development in the process of ATRT tumorigenesis.
000163198 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000163198 588__ $$aDataset connected to CrossRef, PubMed,
000163198 7001_ $$aKoga, Tomoyuki$$b1
000163198 7001_ $$aMiki, Shunichiro$$b2
000163198 7001_ $$0P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8$$aJohann, Pascal D$$b3$$udkfz
000163198 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b4$$udkfz
000163198 7001_ $$aCrawford, John R$$b5
000163198 7001_ $$00000-0003-1909-4361$$aFurnari, Frank B$$b6
000163198 773__ $$0PERI:(DE-600)1467414-2$$a10.1101/gad.339978.120$$gp. genesdev;gad.339978.120v1$$n19-20$$p1316-1329$$tGenes & development$$v34$$x1549-5477$$y2020
000163198 909CO $$ooai:inrepo02.dkfz.de:163198$$pVDB
000163198 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000163198 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000163198 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000163198 9141_ $$y2020
000163198 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGENE DEV : 2018$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-10
000163198 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGENE DEV : 2018$$d2020-01-10
000163198 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000163198 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000163198 980__ $$ajournal
000163198 980__ $$aVDB
000163198 980__ $$aI:(DE-He78)B062-20160331
000163198 980__ $$aI:(DE-He78)HD01-20160331
000163198 980__ $$aUNRESTRICTED