000163204 001__ 163204
000163204 005__ 20240229133509.0
000163204 0247_ $$2doi$$a10.1097/RLI.0000000000000712
000163204 0247_ $$2pmid$$apmid:32930560
000163204 0247_ $$2ISSN$$a0020-9996
000163204 0247_ $$2ISSN$$a1536-0210
000163204 0247_ $$2altmetric$$aaltmetric:90330438
000163204 037__ $$aDKFZ-2020-01901
000163204 041__ $$aeng
000163204 082__ $$a610
000163204 1001_ $$0P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3$$aTavakoli, Anoshirwan Andrej$$b0$$eFirst author$$udkfz
000163204 245__ $$aMeasured Multipoint Ultra-High b-Value Diffusion MRI in the Assessment of MRI-Detected Prostate Lesions.
000163204 260__ $$a[s.l.]$$bOvid$$c2021
000163204 3367_ $$2DRIVER$$aarticle
000163204 3367_ $$2DataCite$$aOutput Types/Journal article
000163204 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611327912_12800
000163204 3367_ $$2BibTeX$$aARTICLE
000163204 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163204 3367_ $$00$$2EndNote$$aJournal Article
000163204 500__ $$a#EA:E010#LA:E010#2021 Feb 1;56(2):94-102
000163204 520__ $$aThe aim of this study was to assess quantitative ultra-high b-value (UHB) diffusion magnetic resonance imaging (MRI)-derived parameters in comparison to standard clinical apparent diffusion coefficient (SD-ADC-2b-1000, SD-ADC-2b-1500) for the prediction of clinically significant prostate cancer, defined as Gleason Grade Group greater than or equal to 2.Seventy-three patients who underwent 3-T prostate MRI with diffusion-weighted imaging acquired at b = 50/500/1000/1500s/mm and b = 100/500/1000/1500/2250/3000/4000 s/mm were included. Magnetic resonance lesions were segmented manually on individual sequences, then matched to targeted transrectal ultrasonography/MRI fusion biopsies. Monoexponential 2-point and multipoint fits of standard diffusion and of UHB diffusion were calculated with incremental b-values. Furthermore, a kurtosis fit with parameters Dapp and Kapp with incremental b-values was obtained. Each parameter was examined for prediction of clinically significant prostate cancer using bootstrapped receiver operating characteristics and decision curve analysis. Parameter models were compared using Vuong test.Fifty of 73 men (age, 66 years [interquartile range, 61-72]; prostate-specific antigen, 6.6 ng/mL [interquartile range, 5-9.7]) had 64 MRI-detected lesions. The performance of SD-ADC-2b-1000 (area under the curve, 0.82) and SD-ADC-2b-1500 (area under the curve, 0.82) was not statistically different (P = 0.99), with SD-ADC-2b-1500 selected as reference. Compared with the reference model, none of the 19 tested logistic regression parameter models including multipoint and 2-point UHB-ADC, Dapp, and Kapp with incremental b-values of up to 4000 s/mm outperformed SD-ADC-2b-1500 (all P's > 0.05). Decision curve analysis confirmed these results indicating no higher net benefit for UHB parameters in comparison to SD-ADC-2b-1500 in the clinically important range from 3% to 20% of cancer threshold probability. Net reduction analysis showed no reduction of MR lesions requiring biopsy.Despite evaluation of a large b-value range and inclusion of 2-point, multipoint, and kurtosis models, none of the parameters provided better predictive performance than standard 2-point ADC measurements using b-values 50/1000 or 50/1500. Our results suggest that most of the diagnostic benefits available in diffusion MRI are already represented in an ADC composed of one low and one 1000 to 1500 s/mm b-value.
000163204 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000163204 588__ $$aDataset connected to CrossRef, PubMed,
000163204 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b1$$udkfz
000163204 7001_ $$0P:(DE-He78)2ef631585610340ff425c9c31fcabd03$$aTichy, Diana$$b2$$udkfz
000163204 7001_ $$0P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aRadtke, Jan Philipp$$b3$$udkfz
000163204 7001_ $$aGörtz, Magdalena$$b4
000163204 7001_ $$aSchütz, Viktoria$$b5
000163204 7001_ $$aStenzinger, Albrecht$$b6
000163204 7001_ $$aHohenfellner, Markus$$b7
000163204 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b8$$udkfz
000163204 7001_ $$0P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aBonekamp, David$$b9$$eLast author$$udkfz
000163204 773__ $$0PERI:(DE-600)2041543-6$$a10.1097/RLI.0000000000000712$$gVol. Publish Ahead of Print$$n2$$p94-102$$tInvestigative radiology$$v56$$x0020-9996$$y2021
000163204 909CO $$ooai:inrepo02.dkfz.de:163204$$pVDB
000163204 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000163204 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000163204 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2ef631585610340ff425c9c31fcabd03$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000163204 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)79897f8897ff77676549d9895258a0f2$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000163204 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000163204 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000163204 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000163204 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000163204 9141_ $$y2021
000163204 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2020-01-12$$wger
000163204 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-12$$wger
000163204 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINVEST RADIOL : 2018$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000163204 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINVEST RADIOL : 2018$$d2020-01-12
000163204 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000163204 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x1
000163204 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x2
000163204 980__ $$ajournal
000163204 980__ $$aVDB
000163204 980__ $$aI:(DE-He78)E010-20160331
000163204 980__ $$aI:(DE-He78)E020-20160331
000163204 980__ $$aI:(DE-He78)C060-20160331
000163204 980__ $$aUNRESTRICTED