Home > Publications database > Measured Multipoint Ultra-High b-Value Diffusion MRI in the Assessment of MRI-Detected Prostate Lesions. > print |
001 | 163204 | ||
005 | 20240229133509.0 | ||
024 | 7 | _ | |a 10.1097/RLI.0000000000000712 |2 doi |
024 | 7 | _ | |a pmid:32930560 |2 pmid |
024 | 7 | _ | |a 0020-9996 |2 ISSN |
024 | 7 | _ | |a 1536-0210 |2 ISSN |
024 | 7 | _ | |a altmetric:90330438 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-01901 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Tavakoli, Anoshirwan Andrej |0 P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3 |b 0 |e First author |u dkfz |
245 | _ | _ | |a Measured Multipoint Ultra-High b-Value Diffusion MRI in the Assessment of MRI-Detected Prostate Lesions. |
260 | _ | _ | |a [s.l.] |c 2021 |b Ovid |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1611327912_12800 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:E010#LA:E010#2021 Feb 1;56(2):94-102 |
520 | _ | _ | |a The aim of this study was to assess quantitative ultra-high b-value (UHB) diffusion magnetic resonance imaging (MRI)-derived parameters in comparison to standard clinical apparent diffusion coefficient (SD-ADC-2b-1000, SD-ADC-2b-1500) for the prediction of clinically significant prostate cancer, defined as Gleason Grade Group greater than or equal to 2.Seventy-three patients who underwent 3-T prostate MRI with diffusion-weighted imaging acquired at b = 50/500/1000/1500s/mm and b = 100/500/1000/1500/2250/3000/4000 s/mm were included. Magnetic resonance lesions were segmented manually on individual sequences, then matched to targeted transrectal ultrasonography/MRI fusion biopsies. Monoexponential 2-point and multipoint fits of standard diffusion and of UHB diffusion were calculated with incremental b-values. Furthermore, a kurtosis fit with parameters Dapp and Kapp with incremental b-values was obtained. Each parameter was examined for prediction of clinically significant prostate cancer using bootstrapped receiver operating characteristics and decision curve analysis. Parameter models were compared using Vuong test.Fifty of 73 men (age, 66 years [interquartile range, 61-72]; prostate-specific antigen, 6.6 ng/mL [interquartile range, 5-9.7]) had 64 MRI-detected lesions. The performance of SD-ADC-2b-1000 (area under the curve, 0.82) and SD-ADC-2b-1500 (area under the curve, 0.82) was not statistically different (P = 0.99), with SD-ADC-2b-1500 selected as reference. Compared with the reference model, none of the 19 tested logistic regression parameter models including multipoint and 2-point UHB-ADC, Dapp, and Kapp with incremental b-values of up to 4000 s/mm outperformed SD-ADC-2b-1500 (all P's > 0.05). Decision curve analysis confirmed these results indicating no higher net benefit for UHB parameters in comparison to SD-ADC-2b-1500 in the clinically important range from 3% to 20% of cancer threshold probability. Net reduction analysis showed no reduction of MR lesions requiring biopsy.Despite evaluation of a large b-value range and inclusion of 2-point, multipoint, and kurtosis models, none of the parameters provided better predictive performance than standard 2-point ADC measurements using b-values 50/1000 or 50/1500. Our results suggest that most of the diagnostic benefits available in diffusion MRI are already represented in an ADC composed of one low and one 1000 to 1500 s/mm b-value. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |x 0 |f POF IV |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Kuder, Tristan Anselm |0 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6 |b 1 |u dkfz |
700 | 1 | _ | |a Tichy, Diana |0 P:(DE-He78)2ef631585610340ff425c9c31fcabd03 |b 2 |u dkfz |
700 | 1 | _ | |a Radtke, Jan Philipp |0 P:(DE-He78)79897f8897ff77676549d9895258a0f2 |b 3 |u dkfz |
700 | 1 | _ | |a Görtz, Magdalena |b 4 |
700 | 1 | _ | |a Schütz, Viktoria |b 5 |
700 | 1 | _ | |a Stenzinger, Albrecht |b 6 |
700 | 1 | _ | |a Hohenfellner, Markus |b 7 |
700 | 1 | _ | |a Schlemmer, Heinz-Peter |0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec |b 8 |u dkfz |
700 | 1 | _ | |a Bonekamp, David |0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93 |b 9 |e Last author |u dkfz |
773 | _ | _ | |a 10.1097/RLI.0000000000000712 |g Vol. Publish Ahead of Print |0 PERI:(DE-600)2041543-6 |n 2 |p 94-102 |t Investigative radiology |v 56 |y 2021 |x 0020-9996 |
909 | C | O | |o oai:inrepo02.dkfz.de:163204 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)2ef631585610340ff425c9c31fcabd03 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)79897f8897ff77676549d9895258a0f2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93 |
913 | 0 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-315 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Imaging and radiooncology |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Allianz-Lizenz |0 StatID:(DE-HGF)0410 |2 StatID |d 2020-01-12 |w ger |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-12 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2020-01-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INVEST RADIOL : 2018 |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-12 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INVEST RADIOL : 2018 |d 2020-01-12 |
920 | 1 | _ | |0 I:(DE-He78)E010-20160331 |k E010 |l E010 Radiologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l E020 Med. Physik in der Radiologie |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E010-20160331 |
980 | _ | _ | |a I:(DE-He78)E020-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|