001     163204
005     20240229133509.0
024 7 _ |a 10.1097/RLI.0000000000000712
|2 doi
024 7 _ |a pmid:32930560
|2 pmid
024 7 _ |a 0020-9996
|2 ISSN
024 7 _ |a 1536-0210
|2 ISSN
024 7 _ |a altmetric:90330438
|2 altmetric
037 _ _ |a DKFZ-2020-01901
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Tavakoli, Anoshirwan Andrej
|0 P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3
|b 0
|e First author
|u dkfz
245 _ _ |a Measured Multipoint Ultra-High b-Value Diffusion MRI in the Assessment of MRI-Detected Prostate Lesions.
260 _ _ |a [s.l.]
|c 2021
|b Ovid
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611327912_12800
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E010#LA:E010#2021 Feb 1;56(2):94-102
520 _ _ |a The aim of this study was to assess quantitative ultra-high b-value (UHB) diffusion magnetic resonance imaging (MRI)-derived parameters in comparison to standard clinical apparent diffusion coefficient (SD-ADC-2b-1000, SD-ADC-2b-1500) for the prediction of clinically significant prostate cancer, defined as Gleason Grade Group greater than or equal to 2.Seventy-three patients who underwent 3-T prostate MRI with diffusion-weighted imaging acquired at b = 50/500/1000/1500s/mm and b = 100/500/1000/1500/2250/3000/4000 s/mm were included. Magnetic resonance lesions were segmented manually on individual sequences, then matched to targeted transrectal ultrasonography/MRI fusion biopsies. Monoexponential 2-point and multipoint fits of standard diffusion and of UHB diffusion were calculated with incremental b-values. Furthermore, a kurtosis fit with parameters Dapp and Kapp with incremental b-values was obtained. Each parameter was examined for prediction of clinically significant prostate cancer using bootstrapped receiver operating characteristics and decision curve analysis. Parameter models were compared using Vuong test.Fifty of 73 men (age, 66 years [interquartile range, 61-72]; prostate-specific antigen, 6.6 ng/mL [interquartile range, 5-9.7]) had 64 MRI-detected lesions. The performance of SD-ADC-2b-1000 (area under the curve, 0.82) and SD-ADC-2b-1500 (area under the curve, 0.82) was not statistically different (P = 0.99), with SD-ADC-2b-1500 selected as reference. Compared with the reference model, none of the 19 tested logistic regression parameter models including multipoint and 2-point UHB-ADC, Dapp, and Kapp with incremental b-values of up to 4000 s/mm outperformed SD-ADC-2b-1500 (all P's > 0.05). Decision curve analysis confirmed these results indicating no higher net benefit for UHB parameters in comparison to SD-ADC-2b-1500 in the clinically important range from 3% to 20% of cancer threshold probability. Net reduction analysis showed no reduction of MR lesions requiring biopsy.Despite evaluation of a large b-value range and inclusion of 2-point, multipoint, and kurtosis models, none of the parameters provided better predictive performance than standard 2-point ADC measurements using b-values 50/1000 or 50/1500. Our results suggest that most of the diagnostic benefits available in diffusion MRI are already represented in an ADC composed of one low and one 1000 to 1500 s/mm b-value.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Kuder, Tristan Anselm
|0 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
|b 1
|u dkfz
700 1 _ |a Tichy, Diana
|0 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
|b 2
|u dkfz
700 1 _ |a Radtke, Jan Philipp
|0 P:(DE-He78)79897f8897ff77676549d9895258a0f2
|b 3
|u dkfz
700 1 _ |a Görtz, Magdalena
|b 4
700 1 _ |a Schütz, Viktoria
|b 5
700 1 _ |a Stenzinger, Albrecht
|b 6
700 1 _ |a Hohenfellner, Markus
|b 7
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 8
|u dkfz
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1097/RLI.0000000000000712
|g Vol. Publish Ahead of Print
|0 PERI:(DE-600)2041543-6
|n 2
|p 94-102
|t Investigative radiology
|v 56
|y 2021
|x 0020-9996
909 C O |o oai:inrepo02.dkfz.de:163204
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)79897f8897ff77676549d9895258a0f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2020-01-12
|w ger
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INVEST RADIOL : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INVEST RADIOL : 2018
|d 2020-01-12
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21