001     163644
005     20240229120024.0
024 7 _ |2 doi
|a 10.1097/CAD.0000000000000750
024 7 _ |2 pmid
|a pmid:30640794
024 7 _ |2 ISSN
|a 0959-4973
024 7 _ |2 ISSN
|a 1473-5741
024 7 _ |a altmetric:53966382
|2 altmetric
037 _ _ |a DKFZ-2020-01925
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Liese, Juliane
|b 0
245 _ _ |a Cotreatment with sorafenib and oleanolic acid induces reactive oxygen species-dependent and mitochondrial-mediated apoptotic cell death in hepatocellular carcinoma cells.
260 _ _ |a [S.l.]
|b Ovid
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1600847890_28209
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Hepatocellular carcinoma (HCC) is the most common liver malignancy, and the lack of effective chemotherapies underlines the need for novel therapeutic approaches for this disease. Recently, we discovered a novel synergistic induction of cell death by combining sorafenib, the only routinely used palliative chemotherapeutic agent, and the triterpenoid oleanolic acid (OA). However, the underlying mechanisms of action have remained obscure. Here, we report that sorafenib and OA acted in concert to trigger mitochondria-mediated apoptotic cell death, which is dependent on reactive oxygen species (ROS). Sorafenib/OA cotreatment significantly increased ROS production, which was prevented by the ROS scavengers α-tocopherol and MnTBAP. Importantly, rescue experiments showed that ROS were required for sorafenib/OA-induced apoptosis as ROS scavengers protected HCC cells against cell death. In addition, sorafenib and OA cotreatment cooperated to decrease myeloid cell leukaemia-1 expression and to activate Bak, two events that were prevented by ROS scavengers. Bak activation was accompanied by the loss of mitochondrial membrane potential, followed by PARP cleavage, DNA fragmentation and, finally, apoptotic cell death in HCC cells. By providing new insights into the molecular regulation of sorafenib/OA-mediated and ROS-dependent cell death, our study contributes toward the development of novel treatment strategies to overcome sorafenib resistance in HCC.
536 _ _ |0 G:(DE-HGF)POF3-899
|a 899 - ohne Topic (POF3-899)
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |2 NLM Chemicals
|a Antineoplastic Agents
650 _ 7 |2 NLM Chemicals
|a Reactive Oxygen Species
650 _ 7 |0 6SMK8R7TGJ
|2 NLM Chemicals
|a Oleanolic Acid
650 _ 7 |0 9ZOQ3TZI87
|2 NLM Chemicals
|a Sorafenib
650 _ 2 |2 MeSH
|a Antineoplastic Agents: pharmacology
650 _ 2 |2 MeSH
|a Apoptosis
650 _ 2 |2 MeSH
|a Carcinoma, Hepatocellular: drug therapy
650 _ 2 |2 MeSH
|a Carcinoma, Hepatocellular: metabolism
650 _ 2 |2 MeSH
|a Carcinoma, Hepatocellular: pathology
650 _ 2 |2 MeSH
|a Cell Proliferation
650 _ 2 |2 MeSH
|a Drug Therapy, Combination
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Liver Neoplasms: drug therapy
650 _ 2 |2 MeSH
|a Liver Neoplasms: metabolism
650 _ 2 |2 MeSH
|a Liver Neoplasms: pathology
650 _ 2 |2 MeSH
|a Membrane Potential, Mitochondrial: drug effects
650 _ 2 |2 MeSH
|a Mitochondria: drug effects
650 _ 2 |2 MeSH
|a Mitochondria: metabolism
650 _ 2 |2 MeSH
|a Mitochondria: pathology
650 _ 2 |2 MeSH
|a Oleanolic Acid: pharmacology
650 _ 2 |2 MeSH
|a Reactive Oxygen Species: metabolism
650 _ 2 |2 MeSH
|a Sorafenib: pharmacology
650 _ 2 |2 MeSH
|a Tumor Cells, Cultured
700 1 _ |a Hinrichs, Tobias M
|b 1
700 1 _ |a Lange, Matthias
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Fulda, Simone
|b 3
773 _ _ |0 PERI:(DE-600)2025803-3
|a 10.1097/CAD.0000000000000750
|g Vol. 30, no. 3, p. 209 - 217
|n 3
|p 209 - 217
|t Anti-cancer drugs
|v 30
|x 0959-4973
|y 2019
909 C O |o oai:inrepo02.dkfz.de:163644
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-HGF)0
|a Deutsches Krebsforschungszentrum
|b 0
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-HGF)0
|a Deutsches Krebsforschungszentrum
|b 3
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0410
|2 StatID
|a Allianz-Lizenz
|d 2020-01-03
|w ger
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2020-01-03
|w ger
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ANTI-CANCER DRUG : 2018
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)1110
|2 StatID
|a DBCoverage
|b Current Contents - Clinical Medicine
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2020-01-03
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-01-03
920 1 _ |0 I:(DE-He78)L501-20160331
|k L501
|l DKTK Frankfurt
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)L501-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21