000163703 001__ 163703
000163703 005__ 20240229123156.0
000163703 0247_ $$2doi$$a10.1016/j.media.2020.101796
000163703 0247_ $$2pmid$$apmid:32911207
000163703 0247_ $$2ISSN$$a1361-8415
000163703 0247_ $$2ISSN$$a1361-8423
000163703 0247_ $$2ISSN$$a1361-8431
000163703 0247_ $$2altmetric$$aaltmetric:89622292
000163703 037__ $$aDKFZ-2020-01979
000163703 041__ $$aeng
000163703 082__ $$a610
000163703 1001_ $$0P:(DE-He78)26a1176cd8450660333a012075050072$$aMaier-Hein, Lena$$b0$$eFirst author
000163703 245__ $$aBIAS: Transparent reporting of biomedical image analysis challenges.
000163703 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000163703 3367_ $$2DRIVER$$aarticle
000163703 3367_ $$2DataCite$$aOutput Types/Journal article
000163703 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634732141_21237
000163703 3367_ $$2BibTeX$$aARTICLE
000163703 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163703 3367_ $$00$$2EndNote$$aJournal Article
000163703 500__ $$a#EA:E130#
000163703 520__ $$aThe number of biomedical image analysis challenges organized per year is steadily increasing. These international competitions have the purpose of benchmarking algorithms on common data sets, typically to identify the best method for a given problem. Recent research, however, revealed that common practice related to challenge reporting does not allow for adequate interpretation and reproducibility of results. To address the discrepancy between the impact of challenges and the quality (control), the Biomedical Image Analysis ChallengeS (BIAS) initiative developed a set of recommendations for the reporting of challenges. The BIAS statement aims to improve the transparency of the reporting of a biomedical image analysis challenge regardless of field of application, image modality or task category assessed. This article describes how the BIAS statement was developed and presents a checklist which authors of biomedical image analysis challenges are encouraged to include in their submission when giving a paper on a challenge into review. The purpose of the checklist is to standardize and facilitate the review process and raise interpretability and reproducibility of challenge results by making relevant information explicit.
000163703 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000163703 588__ $$aDataset connected to CrossRef, PubMed,
000163703 7001_ $$0P:(DE-He78)97e904f47dab556a77c0149cd0002591$$aReinke, Annika$$b1
000163703 7001_ $$aKozubek, Michal$$b2
000163703 7001_ $$aMartel, Anne L$$b3
000163703 7001_ $$aArbel, Tal$$b4
000163703 7001_ $$0P:(DE-He78)c9d6245b17f0ab26eeed345cb00d3359$$aEisenmann, Matthias$$b5
000163703 7001_ $$aHanbury, Allan$$b6
000163703 7001_ $$aJannin, Pierre$$b7
000163703 7001_ $$aMüller, Henning$$b8
000163703 7001_ $$aOnogur, Sinan$$b9
000163703 7001_ $$aSaez-Rodriguez, Julio$$b10
000163703 7001_ $$avan Ginneken, Bram$$b11
000163703 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b12
000163703 7001_ $$aLandman, Bennett A$$b13
000163703 773__ $$0PERI:(DE-600)1497450-2$$a10.1016/j.media.2020.101796$$gVol. 66, p. 101796 -$$p101796$$tMedical image analysis$$v66$$x1361-8415$$y2020
000163703 909CO $$ooai:inrepo02.dkfz.de:163703$$pVDB
000163703 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)26a1176cd8450660333a012075050072$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000163703 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)97e904f47dab556a77c0149cd0002591$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000163703 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c9d6245b17f0ab26eeed345cb00d3359$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000163703 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000163703 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000163703 9141_ $$y2020
000163703 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED IMAGE ANAL : 2018$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-10
000163703 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMED IMAGE ANAL : 2018$$d2020-01-10
000163703 9201_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Computer-assistierte med. Interventionen$$x0
000163703 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000163703 980__ $$ajournal
000163703 980__ $$aVDB
000163703 980__ $$aI:(DE-He78)E130-20160331
000163703 980__ $$aI:(DE-He78)C060-20160331
000163703 980__ $$aUNRESTRICTED