001     163800
005     20240320153515.0
024 7 _ |a 10.1038/s41586-019-1913-9
|2 doi
024 7 _ |a pmid:32025012
|2 pmid
024 7 _ |a pmc:PMC7025897
|2 pmc
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a altmetric:75079109
|2 altmetric
037 _ _ |a DKFZ-2020-02053
041 _ _ |a eng
082 _ _ |a 500
100 1 _ |a Li, Yilong
|b 0
245 _ _ |a Patterns of somatic structural variation in human cancer genomes.
260 _ _ |a London [u.a.]
|c 2020
|b Nature Publ. Group52462
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710945228_17309
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a siehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium: https://inrepo02.dkfz.de/record/265691 / https://doi.org/10.1038/s41586-022-05597-x
520 _ _ |a A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1-7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancer-frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a TERT protein, human
|0 EC 2.7.7.49
|2 NLM Chemicals
650 _ 7 |a Telomerase
|0 EC 2.7.7.49
|2 NLM Chemicals
650 _ 2 |a Gene Rearrangement: genetics
|2 MeSH
650 _ 2 |a Genetic Variation
|2 MeSH
650 _ 2 |a Genome, Human: genetics
|2 MeSH
650 _ 2 |a Genomics
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mutagenesis, Insertional
|2 MeSH
650 _ 2 |a Neoplasms: genetics
|2 MeSH
650 _ 2 |a Telomerase: genetics
|2 MeSH
700 1 _ |a Roberts, Nicola D
|b 1
700 1 _ |a Wala, Jeremiah A
|b 2
700 1 _ |a Shapira, Ofer
|b 3
700 1 _ |a Schumacher, Steven E
|b 4
700 1 _ |a Kumar, Kiran
|b 5
700 1 _ |a Khurana, Ekta
|b 6
700 1 _ |a Waszak, Sebastian
|b 7
700 1 _ |a Korbel, Jan O
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Haber, James E
|b 9
700 1 _ |a Imielinski, Marcin
|b 10
700 1 _ |a PCAWGStructuralVariationWorkingGroup
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Weischenfeldt, Joachim
|b 12
700 1 _ |a Beroukhim, Rameen
|b 13
700 1 _ |a Campbell, Peter J
|b 14
700 1 _ |a PCAWGConsortium
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1038/s41586-019-1913-9
|g Vol. 578, no. 7793, p. 112 - 121
|0 PERI:(DE-600)1413423-8
|n 7793
|p 112 - 121
|t Nature
|v 578
|y 2020
|x 1476-4687
909 C O |p VDB
|o oai:inrepo02.dkfz.de:163800
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-12
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NATURE : 2018
|d 2020-01-12
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
920 1 _ |0 I:(DE-He78)B330-20160331
|k B330
|l Angewandte Bioinformatik
|x 1
920 1 _ |0 I:(DE-He78)B240-20160331
|k B240
|l Bioinformatik und Omics Data Analytics
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 4
920 1 _ |0 I:(DE-He78)B060-20160331
|k B060
|l B060 Molekulare Genetik
|x 5
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 6
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pädiatrische Gliomforschung
|x 7
920 1 _ |0 I:(DE-He78)B260-20160331
|k B260
|l B260 Bioinformatik der Genomik und Systemgenetik
|x 8
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 9
920 1 _ |0 I:(DE-He78)B063-20160331
|k B063
|l B063 Krebsgenomforschung
|x 10
920 1 _ |0 I:(DE-He78)B087-20160331
|k B087
|l B087 Neuroblastom Genomik
|x 11
920 1 _ |0 I:(DE-He78)W610-20160331
|k W610
|l Core Facility Omics IT
|x 12
920 1 _ |0 I:(DE-He78)W190-20160331
|k W190
|l Hochdurchsatz-Sequenzierung
|x 13
920 1 _ |0 I:(DE-He78)B066-20160331
|k B066
|l B066 Chromatin-Netzwerke
|x 14
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)B330-20160331
980 _ _ |a I:(DE-He78)B240-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)B060-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a I:(DE-He78)B260-20160331
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a I:(DE-He78)B063-20160331
980 _ _ |a I:(DE-He78)B087-20160331
980 _ _ |a I:(DE-He78)W610-20160331
980 _ _ |a I:(DE-He78)W190-20160331
980 _ _ |a I:(DE-He78)B066-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21